
57

Original scientific paper

 MIDEM Society

Population Ranking Based Differential
evolution with Simulated Annealing for Circuit
Optimization
Jernej Olenšek, Árpád Bűrmen

University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

Abstract: Finding the values of circuit parameters for which the resulting circuit satisfies the design requirements can be formulated as
an optimization problem. This problem is often solved using global optimization algorithms that provide some guarantee the resulting
solution is the best possible one provided that the algorithm is given sufficient time. Unfortunately, these algorithms are slow and
require many circuit evaluations. One of the algorithms proposed in our past research is PSADE that combines the favorable properties
of simulated annealing and differential evolution and was shown to be a fast and reliable tool for solving circuit optimization problems.
To make PSADE faster we replace the Metropolis criterion for accepting a trial point with one that is based on population ranking. The
proposed algorithm retains its highly parallel nature. We tested the algorithm on a set of mathematical test functions and on a real-
world circuit optimization problem. The results on the analog circuit sizing case show that the modified algorithm is more efficient and
reliable than PSADE and some other global optimization methods.

Keywords: differential evolution; simulated annealing; population ranking; global optimization;, circuit design

Optimizacija vezij z diferencialno evolucijo in
simuliranim ohlajanjem na osnovi rangiranja
populacije
Izvleček: Iskanje vrednosti parametrov, pri katerih vezje zadosti načrtovalskim zahtevam, lahko predstavimo kot optimizacijski
problem, ki ga pogosto rešujemo z globalnimi optimizacijskimi postopki. Ti nam zagotavljajo, da bomo našli najboljšo možno
rešitev pod pogojem, da ima postopek na razpolago dovolj časa. Na žalost tovrstni postopki zahtevajo veliko simulacij vezja. Eden
od postopkov, ki smo jih razvili, je postopek PSADE, ki združuje ugodne lastnosti diferencialne evolucije in simuliranega ohlajanja in
se je izkazal kot hiter in zanesljiv pri optimizaciji vezij. Da bi postopek pospešili, smo zamenjali Metropolisov kriterij za sprejem točk s
kriterijem, ki temelji na rangu točke znotraj populacije. Dobljeni postopek lahko zelo učinkovito paraleliziramo, saj obdrži vse ugodne
lastnosti postopka PSADE. Preizkusili smo ga na naboru matematičnih funkcij in na praktičnem primeru iz načrtovalske prakse. Rezultati
kažejo, da je pri načrtovanju vezij predlagani postopek bolj učinkovit in zanesljiv kot nekatere druge znane globalne optimizacijske
metode

Ključne besede: diferencialna evolucija; simulirano ohlajanje; rangiranje populacije; globalna optimizacija; načrtovanje vezij

* Corresponding Author’s e-mail: jernej.olensek@fe.uni-lj.si

Journal of Microelectronics,
Electronic Components and Materials
Vol. 46, No. 2(2016), 57 – 64

1 Introduction

Choosing the values (parameters) of circuit compo-
nents (also referred to as circuit sizing) with the goal of
satisfying the design requirements can be formulated
as an optimization problem by introducing a cost func-
tion (CF) that reflects the quality of the circuit in a real
number. Finding the best performing circuit reduces to
finding the minimum of a CF. Unfortunately real-world

CFs have many local minima. Finding the best local
minimum is a computationally hard problem that is ad-
dressed with global optimization algorithms.

Many global optimization algorithms were devised in
the past. Some of the most successful mimic the evolu-
tion (e.g. [1, 2]) and behavior (e.g. [3, 4]) of living beings
and physical processes (e.g. [5, 6]). Simulated anneal-

58

J. Olenšek et al; Informacije Midem, Vol. 46, No. 2(2016), 57 – 64

ing (SA) ([7, 8]) was one of the first global optimization
algorithms drawing its inspiration from the process of
cooling a metal. Due to its nature this algorithm is ca-
pable of finding a global minimum, albeit with a large
number of CF evaluations.

Due to the so-called “no free lunch” theorems [9] the
research in the area of global optimization started to
focus on hybrid algorithms (e.g. [10, 11]). In our past
research we hybridized SA with differential evolution
(DE) [12] which resulted in the parallel simulated an-
nealing and differential evolution algorithm (PSADE)
[14] that exhibited good performance on mathemati-
cal test functions, as well as, real world circuit design
problems. Due to the SA component of PSADE it can
mathematically be proven that the algorithm converg-
es to a global minimizer given a sufficiently large num-
ber of CF evaluations. PSADE is highly parallelizable
which makes it possible to significantly speed up the
optimization when multiple processors are available.

PSADE has the same drawbacks as other heuristic op-
timization algorithms. Most notable is the possibility
of premature convergence to a local minimizer. The
main cause of this drawback is the Metropolis accept-
ance criterion of SA which often rejects trial points that
would otherwise lead the algorithm away from a local
minimizer. Furthermore, the Metropolis acceptance cri-
terion is based on an artificial parameter (temperature)
that is based on the CF value. Because the CF value can
differ to a great extent between similar optimization
problems the acceptance criterion can be misguided
into rejecting promising points.

To counter this drawback and simplify the algorithm
we propose a different approach for accepting points
based on the solution ranking within the popula-
tion. The rank of the point is determined by sorting
the points according to their CF value. We also assign
every individual in the population a separate position.
In turn, every position is assigned a set of parameters
for SA and DE. Parameters corresponding to higher
positions have a greater probability to be used in the
process of constructing and evaluating a trial point.
The algorithm tries to align the positions of individu-
als within the population with their ranks. This align-
ment is occasionally broken to increase the probability
of accepting an inferior solution which may lead the
algorithm away from a local minimum. We deem the
proposed algorithm DESAPR (DE and SA with Popula-
tion Ranking).

The paper is divided as follows. Section 2 outlines the
proposed approach. The asynchronous parallel ver-
sion of the algorithm is the subject of section 3. The
optimization results for mathematical test function are

given in section 4 while section 5 presents the results
obtained on a real-world circuit optimization problem.
Section 6 concludes the paper.

Notation. Vectors are denoted by bold lowercase let-
ters. The i–th component of vector a is denoted by ai.
Inequalities are applied to vectors component-wise.
The realization of a uniformly distributed random num-
ber from interval (0,1) is denoted by U(0,1).

2 The proposed method

The problem subject to optimization can mathemati-
cally be formulated as

 * argmin () S f∈= xx x

:f S → R
 { }: , NS = ∈ ≤ ≤x x L x UR

 (1)

where f is the CF, N is the number of optimization
variables, and L and U are vectors of lower and upper
bounds imposed on these variables. The outline of the
DESAPR is given by Algorithm 1.

Algorithm 1: DESAPR outline.
1. Initialization.
2. Competition.
3. Selection of parameters.
4. Trial point generation.
5. Trial point evaluation.
6. Replacement of a point in the population.
7. Local search.
8. If termination condition is not met, go back to

step 2.

The population consists of M individuals. It is initialized
by dividing each of the N parameter ranges given by
vectors L and U uniformly into M subintervals. For every
variable the M subintervals are assigned randomly to
M individuals. The value of a variable for an individual
is then chosen by randomly selecting a point in the as-
signed subinterval.

We denote the available positions with i = 0,1, …, M – 1.
The behavior of the algorithm is determined by the
weight factor W, crossover probability PX, and random
step probability distribution width parameter η. A set
of parameter values is assigned to every one of the M
available positions. The values of parameters assigned
to i-th position are

59

0

Wc i
iW W e−=

, ,0 ,PXc i
X i XP P e−=

 1i
i eη = −

 (2)

Coefficients cW and cpX are computed from the weight
factors and crossover probabilities of positions 0 and
M-1 which are user defined parameters of the algo-
rithm.

 () 1 0

1

1 lnW
M

Wc M
W

−

−

= −

() 1 ,0

, 1

1 ln
X

X
P

X M

P
c M

P
−

−

= −
 (3)

Every individual xi is assigned to one of the M available
positions. Let pi and ri denote the position and the rank
of i-th individual. The rank of an individual is deter-
mined by ordering the individuals according to the CF
value fi = f(xi) and assigning ranks from M-1 (for the low-
est CF value) to 0 (for the highest CF value). The goal of
the competition in step 2 of Algorithm 1 is to align the
rank of the individuals in the population with their po-
sitions. For this purpose two individuals are randomly
selected from the population. Let i and j denote their
indices. They exchange positions if rj > ri and pj < pi.
This forces individuals with high rank (low CF value) to
move to high positions.

In step 3 of Algorithm 1 an individual is selected ran-
domly with probability PS,i.

, 1

0

i

i

r

S i M r
i

eP
e−

=

=
∑

 (4)

Let k denote the position of the selected individual. The
weight factor (Wk), the crossover probability (PX,k), and
the range parameter (ηk) values assigned to this posi-
tion are used in steps 4-7 of Algorithm 1. Individuals
with high rank are selected with higher probability. Be-
cause higher ranking individuals tend to occupy higher
positions, parameter values corresponding to higher
positions are often used (but not always).

To simplify the notation the search space is transformed
so that the components of vectors (i.e. individuals) lie
within [0,1], where 0 and 1 correspond to the lower and
the upper bound, respectively.

In step 4 of Algorithm 1 a trial point is generated using
a modified DE operator [12] and polynomial mutation
[13]. First a parent (x) and three additional distinct in-
dividuals (u, v, and w) are selected. The DE operator is

applied component wise with probability PX,k resulting
in point y‘ with components

 () , ' (0,1)
.

otherwise
i k i i X k

i
i

u W v w U P
y

x
 + − ≤

= 


 (5)

If y‘ violates the bounds the components that are out-
side the bounds (i.e. y1‘ ∉ [0,1]) are corrected resulting
in point y with components defined as

()
()

' '

'

'

0 1
0,1 (1) 1 .

0,1 0

i i

i i i i

i i i

y y
y x U x y

x U x y

 ≤ ≤
= + ⋅ − >
 − ⋅ <

 (6)

Finally, polynomial mutation is applied to y compo-
nent wise. For every component a random number
ai = U(0,1) is generated. The trial point z is then com-
puted as

 () ()

()()
()

1/ 11

1/ 11

1 2 2 2 1 0.5

2 1 2 1 1 otherwise

kk

kk

i i i i

i i

i i i

y
z y

y

ηη

ηη

α α α

α α

++

++

  − − + − > = + 
  + − − − 

 (7)

Let fz denote the CF value corresponding to the trial
point z. The population along with the trial point is or-
dered according to the CF value. Rank 0 is assigned to
the point with the highest CF value. Let rz and rx denote
the ranks of the trial point and the parent, respectively.
The trial point is accepted into the population (i.e. re-
places the parent point x in step 6 of Algorithm 1) with
probability

()
min 1,

z xr r k
M kP e
−

−
 

=   
 (8)

The acceptance criterion resembles the original Me-
tropolis criterion [7] in the sense that higher ranking
trial points are accepted with higher probability. A trial
point ranking higher than the parent point is always ac-
cepted.

Finally, in step 7 of Algorithm 1 a simple local search
strategy is performed if the trial point is accepted, the
parent point is the best point in the population, or with
some small probability PL (set to 0.05). Local search uses
one of the points in the population as the origin and
two additional points for computing a search direction
(d). All three points are chosen randomly. Two addition-
al points are evaluated along direction d and a quad-
ratic model of the CF is computed. This model is mini-
mized and the resulting point evaluated. The evaluated
point with the lowest cost function value is the result of

J. Olenšek et al; Informacije Midem, Vol. 46, No. 2(2016), 57 – 64

60

the local search. The resulting point replaces the parent
point if its CF value is lower. The complete details of the
local search can be found in [14].

3 Parallel implementation

Suppose one has m parallel processors available. As-
suming most of the computational time is spent for
evaluating the trial point and for local search, these two
tasks are outsourced to parallel processors in an asyn-
chronous manner. The main process (master) runs the
following algorithm:

Algorithm 2: asynchronous parallel optimization
1. Initialization.
2. If no processor is idle go to step 5.
3. Perform steps 2-4 of Algorithm 1 (generate a trial

point).
 Send it to an idle processor (p) for evaluation.
 Remember the parent point (x) and the select-

ed parameters position (k) for that processor.
4. If there are idle processors left return to step3.
5. Wait until one of the processors (p) finishes its

task. Collect the results.
6. If p was performing global search point evalua-

tion.
 Perform step 6 of Algorithm 1 (point replace-

ment) using the parameters corresponding to
position k that was stored for p.

 If required, start a local search (step 7 of Algo-
rithm 1) on processor p.

 If p was performing local search.
 Replace the parent point of p if local search

found a better point.
7. If termination condition is not met, go back to

step 2.

Algorithm 2 performs multiple passes of Algorithm 1
in parallel and in this way accelerates the evolution of
the population.

4 Performance on mathematical test
functions

DESAPR was implemented within the framework of the
PyOPUS library [15]. The performance of DESAPR was
compared to that of PSADE, DE, SA, and JADE [18] on
13 test functions from [14]. For the sake of comparison,
30 optimization runs were performed for every func-
tion. We will later use the presented method for analog
circuit sizing, where CF evaluations can take several
seconds. Therefore we impose a CF evaluation budget

of 100000 function evaluations per run to maintain rea-
sonable optimization run times.

For DESAPR we used fixed parameter values in all ex-
periments: M=20, W0=0.9, WM-1=0.9, PX0=0.9, PXM-1=0.1.
We made no attempt to fine tune the parameter val-
ues to any specific problem. It is very time consum-
ing especially for real world problems, where every
CF evaluation can take considerable amount of time.
The values were chosen based on our experience with
evolutionary algorithms. High weight factor for DE and
low crossover probability tend to maintain population
diversity longer, which is desirable since DESAPR uses
very small population. Fine tuning the parameters and
introducing parameter adaptation or evolution could
lead to even better performance for our method and is
also subject of our future research.

For the compared methods, the parameters were se-
lected according to guidelines from the authors of the
methods. For DE we used DE/rand/bin strategy with
population size 100, weight factor 0.5 and crossover
probability 0.9. SA used in our experiments uses only
two parameters. We set the final temperature and ran-
dom step range parameter to Tmin=1e-10, Rmin=1e-10.
For PSADE we set population size to 20, Tmin=1e-10,
Rmin =1e-10, t1 = 0.01 (local step), t2 =0.1 (parameter
adaptation). For JADE we also followed the author sug-
gestions. We used the version without the archive, as
suggested by the authors for problems with low di-
mensionality (< 30). We used the population size of
100, the learning parameter c=0.1 and the percentage
of points considered as the best in population p=5%.

The results are given in Table 1.

For every function we chose a target CF value ftarget, that
lies in the basin of attraction of the global minimum.
Finding this solution means that global search was suc-
cessful, and any local search procedure can be used to
quickly find the exact minimum. Not all runs succeed
in reaching ftarget. We report the success rate and the
average number (over successful runs) of CF evalua-
tions (#CF) needed to reach ftarget. The average final CF
error (with respect to the true global minimum) after
100 000 CF evaluations is listed in the error column. The
best value of #CF and error are written in boldface if
there exist a statistically significant difference between
the best and second best method.

No method was able to reach ftarget for all functions in all
runs. JADE and DESAPR outperformed the other meth-
ods so we will focus on them. Considering final CF val-
ue, JADE outperformed DESAPR on 8 functions, while
DESAPR was better only on 2 functions. On 3 functions
there was no statistically significant difference. When

J. Olenšek et al; Informacije Midem, Vol. 46, No. 2(2016), 57 – 64

61

Table 1: Performance comparison results for 30D mathematical test functions. The function value at the global mini-
mum is denoted by f*. The results of the best performing algorithm are written in boldface if there exist a statistically
significant difference to the second best method.

Function f* ftarget #CF Success rate [%] error Algorithm
f1

Sphere
0 10-10 39388

62347
NA
NA

34000

100
100

0
0

100

9.74 * 10-17

5.32 * 10-12

5.20 * 10-7

7.09 * 10-6

0.0

DESAPR
PSADE
DE
SA
JADE

f2

Schwefel 2.22
0 0.1 14477

47562
58954
78691
16020

100
100
100

76
100

5.19 * 10-7

4.91 * 10-2

1.73 * 10-4

4.30 * 10-3

0.0

DESAPR
PSADE
DE
SA
JADE

f3

Schwefel 1.2
0 15 37693

67121
NA

61051
26334

100
100

0
100
100

7.11 * 10-3

0.811
29.01

7.38 * 10-4

4.81 * 10-9

DESAPR
PSADE
DE
SA
JADE

f4

Schwefel 2.21
0 0.1 35228

71209
94510
73522
88247

100
100

36
100

63

4.07 * 10-5

0.073
2.94 * 10-1

1.18 * 10-3

9.22 * 10-2

DESAPR
PSADE
DE
SA
JADE

f5

Rosenbrock
0 30 18919

36599
57851
63210
17418

100
100
100

70
100

16.52
21.46
21.11
92.07
4.28

DESAPR
PSADE
DE
SA
JADE

f6

Step
0 0 11149

16151
42566
61547
10862

100
100
100
100
100

0
0
0
0
0

DESAPR
PSADE
DE
SA
JADE

f7

Noisy quartic
0 0.02 30999

36211
79544
58044

16225

100
100

57
73

 100

7.84 * 10-13

2.31 * 10-3

2.58 * 10-2

1.41 * 10-2

1.96 * 10-3

DESAPR
PSADE
DE
SA
JADE

f8

Schwefel 2.26
-418.982887*30
= -12569.486618

-12569.45 22049
36955

NA
NA

77722

97
93

0
0

97

3.95
7.90

7.59 * 103

7.11 * 102

3.95

DESAPR
PSADE
DE
SA
JADE

f9

Rastrigin
0 0.1 30697

81588
NA
NA

77644

100
100

0
0

100

6.83 * 10-13

8.19 * 10-3

144.23
6.31

1.60 * 10-4

DESAPR
PSADE
DE
SA
JADE

f10

Ackley
0 10-4 31255

55982
96542

NA
27122

100
100

83
0

100

2.27 * 10-7

1.93 * 10-5

8.14 * 10-4

0.71
4.44 * 10-16

DESAPR
PSADE
DE
SA
JADE

f11

Griewank
0 10-9 42281

77545
NA
NA

35385

100
100

0
0

100

1.37 * 10-13

7.88 * 10-9

4.13 * 10-8

2.10 * 10-2

5.55 * 10-17

DESAPR
PSADE
DE
SA
JADE

J. Olenšek et al; Informacije Midem, Vol. 46, No. 2(2016), 57 – 64

62

comparing the speed, JADE was faster on 7 functions,
while DESAPR was better on 4. JADE displays a good
fine tuning capabilities and fast convergence on uni-
modal and well behaved functions. However on the
most difficult f8 and f9, that have many local minima,
DESAPR was significantly better than JADE, regarding
both the speed and the final solution quality. JADE and
DESAPR also exhibit similar success rate.

5 Performance on a real-world design
problem

We tested DESAPR by sizing a Miller operational trans
conductance amplifier (OTA) (Figure 1)[16] across a
large number of corner points. The bias current was set
to 100µA. The performance measures and the design
requirements are listed in Table 2.

Every corner point is a combination of temperature
(0oC, 25 oC, and 100 oC), operating voltage (1.7V, 1.8V,
and 2.0V), and CMOS corner model (average, worst
power, worst speed, worst one, and worst zero). Let
 denote the set of 45 corner points obtained in this
manner. Every design requirement must be met for all
45 corner points from set  . The CF is a function of the
design parameters (xD). It is constructed as a sum of
contributions (CFi) corresponding to individual perfor-
mance measures.

 () ()D i DCF CF= ∑x x (9)

Let pi(xD), gi, and ni denote the worst value of a perfor-

mance measure across corners from set i ⊆  , the
corresponding goal, and the corresponding norm, re-
spectively. A contribution of a performance measure to
the CF for which an upper bound is imposed (design
requirement of the form pi(xD) ≤ gi) is computed as [17]

()

6

() (the design requirement is not met)
()

()10 otherwise

i D i
i D i

i
i D

i D i

i

p g p g
n

CF
p g

n
−

− ≥=  − ⋅


x x
x

x (10)

For performance measures with design requirements
of the form pi(xD) ≥ gi the roles of pi(xD) and gi in equa-
tion (10) are exchanged. By default the norm is equal
to the goal. If the goal is 0, the norm is set to 1. An ex-
ception is the circuit area for which the norm is set to
100µm2. Constructing the cost function in this manner
penalizes designs that fail to satisfy the design require-
ments with a positive CF contribution while rewarding
designs that exceed the design requirements with a
small negative CF contribution.

Figure 1: Miller OTA.

The optimizer tries to find the minimum of the CF by
tuning the 13 design parameters (11 transistor channel
widths and lengths, the resistance of R and the capaci-
tance of C). The optimizer stops as soon as all design
requirements are satisfied.

Table 2: Design requirements and circuit analyses from
which the performance of the Miller OTA is evaluated.

Performance measure Goal Required
analyses

Supply current [µA] ≤ 200 op
Vgs overdrive [V] ≥ 0.0 op
Vds overdrive [V] ≥ 0.1 op
Output swing [V] ≥ 1.2 dc
Gain [dB] ≥ 60 ac
UGBW [MHz] ≥ 30 ac
Phase margin [o] ≥ 50 ac
PSRR Vdd [dB] ≥ 65 ac, acvdd

f12

Penalty 1
0 10-10 39953

52650
NA
NA

32804

100
100

7
0

100

4.70 * 10-16

3.31 * 10-16

1.71 * 10-9

4.94 * 10-8

3.77 * 10-32

DESAPR
PSADE
DE
SA
JADE

f13

Penalty 2
0 10-10 43895

54261
NA
NA

34960

100
100

0
0

100

1.65 * 10-14

5.74 * 10-15

3.59 * 10-7

1.01 * 10-6

4.39 * 10-30

DESAPR
PSADE
DE
SA
JADE

J. Olenšek et al; Informacije Midem, Vol. 46, No. 2(2016), 57 – 64

63

PSRR Vss [dB] ≥ 65 ac, acvss
CMRR [dB] ≥ 90 ac, accom
Settling time (up) [ns] ≤ 100 tran
Settling time (down) [ns] ≤ 100 tran
Overshoot (up) [%] ≤ 10 tran
Overshoot (down) [%] ≤ 10 tran
Slew rate (up) [V/µs] ≥ 10 translew
Slew rate (down) [V/µs] ≥ 10 translew
Circuit area [µm2] ≤ 1000 -

Because evaluating one point in the design space re-
quires the circuit to be evaluated across all corner
points from  a strategy for reducing the number of
circuit evaluations was used. The circuit was optimized
in multiple passes where the solution of k–th pass (xD,k)
was used as the initial point for pass k +1. In the be-
ginning of k–th pass all performance measures were
evaluated across all corners from  at the initial point
xD,k-1. Let ic ∈ denote the corner point where the i–th
performance measure reached its worst value. If this
worst performance did not satisfy the corresponding
design requirement corner point ci was added to i . If
no corner was added to any of the corner point subsets,
no further passes were performed. If the resulting circuit
satisfied all design requirements the run was deemed as
successful. If, however, a corner point was added to any
of the corner point subsets, the CF was minimized using
an optimization algorithm starting from xD,k-1 which re-
sulted in point xD,k. In most cases the final corner subsets
contained only a handful of corners where the circuit
exhibited its worst performance. Therefore the number
of circuit evaluations was much lower compared to the
brute force approach where every point in the design
space is evaluated across all 45 corners.

Population based algorithms were started from a given
initial point xD,k by replacing one member of the ini-

tial population with xD,k. Optimization was stopped as
soon as all design requirements were satisfied across
the corresponding corner point sets i or if the number
of evaluated circuits exceeded 50000. Four optimiza-
tion algorithms were tested: differential evolution (DE),
PSADE [14], DESAPR and JADE. SA was not included
in this test because its performance on mathematical
test functions considering the average final CF value
was significantly worse than the performance of DE.
Due to the stochastic nature of the tested algorithms
the circuit was optimized 10 times on a cluster of 100
processors. For every algorithm the final CF value, the
run time, and the number of performed circuit analyses
was recorded. The minimal, the maximal, and the aver-
age results are listed in Table 3.

In terms of the final CF value DE and JADE failed to
find a circuit satisfying all design requirements, despite
many more CF evaluations. DESAPR and PSADE both
succeeded in finding such a circuit in all 10 optimiza-
tions. The final CF value found by PSADE was slightly
better, although this is not relevant because the opti-
mization was stopped as soon as a circuit satisfying all
design requirements was found and there was no real
competition between the algorithms in terms of find-
ing the best possible circuit. In terms of computational
time DESAPR was on average two times faster than
PSADE. The same can be said about the number of cir-
cuit analyses.

6 Conclusion

Finding the values of the circuit’s design parameters is
an important task in analog design automation. Global
optimization algorithms are often selected for this task
due to their ability to find the best possible circuit. Un-

Table 3: Performance comparison results for the Miller OTA. The best results (CF value and time) are written in bold-
face.

CF Time [s] # op # dc # ac # acvss # acvdd # accom # tran # translew
DE Min 1.76e-02 7.42e+03 597390 132382 999350 221375 241473 261571 528424 264396

Max 4.97e-01 2.95e+04 2358660 381896 5036254 2105616 2280094 2396099 2029708 1133701
Avg 8.66e-02 1.96e+04 1453050.4 271884.2 3049903.2 1004943.8 1080426.9 1134624.7 1247288.0 670108.5

PSADE Min -3.99e-05 6.59e+02 34722 9180 45739 9180 12955 14976 39943 21951
Max -3.50e-05 3.59e+03 180440 42717 365833 112328 95558 119591 259453 124762
Avg -3.77e-05 1.92e+03 107708.4 24171.2 172718.2 48279.7 46172.2 55005.7 136731.1 66726.0

DESAPR Min -3.96e-05 4.08e+02 19222 5750 31718 6225 8090 8090 24758 13626
Max -3.47e-05 1.24e+03 69940 15284 117381 29909 35803 39533 75463 54541
Avg -3.70e-05 9.24e+02 46279.4 10833.1 71826.0 19131.2 20380.1 23858.7 53771.4 32792.2

JADE Min 8.67E-03 2.55E+05 3806920 688720 10603220 5299470 5299470 5299470 5989420 3018020
Max 5.74E-02 4.08E+05 8380226 1280426 27604226 11204410 11204410 11062510 11054026 5803526
Avg 2.78E-02 3.06E+05 5.70e+06 9.55e+05 1.77e+07 7.56e+06 7.59e+06 7.51e+06 8.00e+06 4.23e+06

J. Olenšek et al; Informacije Midem, Vol. 46, No. 2(2016), 57 – 64

64

fortunately these algorithms are quite slow. We pro-
pose a modification of the PSADE global optimization
algorithm that replaces the original Metropolis crite-
rion of simulated annealing with a ranking based cri-
terion. By replacing the acceptance criterion we hope
to avoid situations where the algorithm gets caught in
the neighborhood of a local minimum. The proposed
algorithm (DESAPR) is highly parallelizable. We tested
the algorithm on a set of mathematical test functions
and on a real-world circuit design problem. The results
confirmed, that DESAPR is an efficient and reliable op-
timizer for analog circuit sizing problem.

7 Acknowledgements

The research was co-funded by the Ministry of Educa-
tion, Science, and Sport (Ministrstvo za Šolstvo, Zna-
nost in Šport) of the Republic of Slovenia through the
programme P2-0246 Algorithms and optimization
methods in telecommunications.

8 References

1. JY Sun, QF Zhang, and EPK Tsang. DE/EDA: A new
evolutionary algorithm for global optimization.
Information Sciences, 169(3-4):249–262, 2005.

2. R Chelouah and P Siarry. A continuous genetic al-
gorithm designed for the global optimization of
multimodal functions. Journal of Heuristics, 6(2):
191–213, 2000.

3. Chuen Tse Kuah, Kuan Yew Wong, and Manoj
Kumar Tiwari. Knowledge sharing assessment:
An Ant Colony System based Data Envelopment
Analysis approach. Expert Systems with Applica-
tions, 40(8):3137–3144, 2013.

4. Bolun Chen, Ling Chen, and Yixin Chen. Efficient
ant colony optimization for image feature selec-
tion. Signal Processing, 93(6, SI):1566–1576, 2013.

5. J Kennedy and R Eberhart. Particle swarm optimi-
zation. IEEE International Conference on Neural
Networks Proceedings, 1-6: 1942–1948, 1995.

6. JJ Liang, AK Qin, PN Suganthan, and S Baskar.
Comprehensive learning particle swarm opti-
mizer for global optimization of multimodal func-
tions. IEEE Transactions on Evolutionary Compu-
tation, 10(3):281–295, 2006.

7. S Kirkpatrick, CD Gelatt, and MP Vecchi. Op-
timization by simulated annealing. Science,
220(4598):671–680, 1983.

8. D. R. Thompson and G. L. Bilbro. Sample-sort sim-
ulated annealing. IEEE Transactions on System,
Man, and Cybernetics (B), 35(3):625–632, 2005.

9. David H. Wolpert and William G. Macready. No

free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67–82,
1997.

10. A. Kaveh and S. Talatahari. Particle swarm opti-
mizer, ant colony strategy and harmony search
scheme hybridized for optimization of truss struc-
tures. Computers & Structures, 87(5-6):267–283,
2009.

11. Ali Riza Yildiz. A novel hybrid immune algorithm
for global optimization in design and manufac-
turing. Robotics and Computer-Integrated Manu-
facturing, 25(2):261–270, 2009.

12. R Storn and K Price. Differential evolution - A sim-
ple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimi-
zation, 11(4):341–359, 1997.

13. M Hamdan. A dynamic polynomial mutation for
evolutionary multi-objective optimization algo-
rithms. International Journal on Artificial Intelli-
gence Tools, 20(1):209–219, 2011.

14. Jernej Olenšek, Tadej Tuma, Janez Puhan, and
Árpád Bűrmen. A new asynchronous parallel
global optimization method based on simulated
annealing and differential evolution. Applied Soft
Computing, 11(1):1481–1489, 2011.

15. “PyOPUS - Circuit Simulation and Optimization”,
available at http://fides.fe.uni-lj.si/pyopus/, 2015.

16. R.J. Baker, CMOS Circuit Design, Layout, and Simu-
lation, Wiley-IEEE Press, Hoboken (NJ), 2007.

17. Á Bűrmen, D Strle, F Bratkovič, J Puhan, I Fajfar, T
Tuma. Automated robust design and optimiza-
tion of integrated circuits by means of penalty
functions. AEU-International journal of electron-
ics and communications 57 (1), 47-56, 2003.

18. Jingqiao Zhang and Arthur C. Sanderson. JADE:
Adaptive Differential Evolution with Optional Ex-
ternal Archive. IEEE Transactions on evolutionary
computation, 13 (5), 945-958, october 2009.

Arrived: 18. 12. 2015
Accepted: 13. 06. 2016

J. Olenšek et al; Informacije Midem, Vol. 46, No. 2(2016), 57 – 64

