
160

Original scientific paper

 MIDEM Society

Computing Worst-Case Performance and Yield 
of Analog Integrated Circuits by Means of Mesh 
Adaptive Direct Search
Árpád Bűrmen1, Husni Habal2

1University of Ljubljana, Faculty of Electrical Engineering
2Technical University of Munich

Abstract: Estimating the parametric yield of a circuit by means of a Monte Carlo analysis can be slow, particularly when the yield 
estimate is close to 100%, as a large number of samples are necessary to reach the desired level of confidence. Deterministic numerical 
algorithms have been successfully used in commercial tools for yield estimation. Many of them are gradient-based. The gradients 
are estimated numerically using finite differences, because most simulators do not compute sensitivities. In this paper, an approach 
is proposed based on a derivative-free optimization algorithm from the family of mesh adaptive direct search methods. The basic 
algorithm is extended with capabilities that speed up the convergence and enable the algorithm to cope with infeasible starting 
points. The new approach is compared to a commercial tool that uses gradient-based algorithms for worst-case analysis. The results 
show that the proposed approach is capable of producing accurate results within similar computational budgets. 

Keywords: analog circuit design;, design centering; worst-case analysis; yield analysis; optimization; mesh adaptive direct search

Določanje najslabših lastnosti in izplena 
analognih integriranih vezij z adaptivnim 
mrežnim direktnim optimizacijskim postopkom
Izvleček: Določanje izplena vezja s pomočjo Monte Carlo analize je pogosto zamuden postopek, še posebej, ko se izplen približuje 
100%, ker potrebujemo za zanesljive rezultate veliko število vzorcev. Deterministični postopki za določanje izplena so na voljo v 
komercialnih orodjih. Številni postopki se zanašajo na informacijo o gradientu, ki ga določajo numerično, saj večina simulatorjev ne 
računa občutljivosti rezultatov. Članek opisuje pristop z uporabo brezgradientnega optimizacijskega postopka iz družine adaptivnih 
mrežnih direktnih optimizacijskih postopkov. Osnovni postopek je nadgrajen z razširitvami, ki pospešijo konvergenco proti rešitvi 
problema in omogočajo, da postopek uporabi začetno točko, ki krši omejitve. Predlagani pristop smo primerjali s komercialnih 
orodjem, ki uporablja gradientne optimizacijske postopke. Rezultati kažejo, da je predlagan pristop sposoben najti pravilne rešitve 
problemov v primerljivem času. 

Ključne besede: načrtovanje analognih vezij; centriranje; določaje najslabših vrednosti lastnosti; analiza izplena; optimizacija; adaptivni 
mrežni direktni optimizacijski postopki
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1 Introduction

Modern integrated circuits must exhibit adequate 
performance across a given range of operating condi-
tions, such as supply voltage and temperature, and in 
the presence of random variations resulting from the 
manufacturing process [1]. Towards this objective, par-
ametric yield is defined as the fraction of manufactured 
circuits that meet all performance specifications, such 

as minimum gain and maximum power, in considera-
tion of all operating conditions, as well as the statistical 
distribution of random variations. A prerequisite for de-
signing such a circuit is an efficient means of evaluating 
the circuit’s worst performance. 

Manufactured circuits that fail an imposed perfor-
mance specification must be discarded, such that the 
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parametric yield is reduced below 100%. The simplest 
means to estimate the parametric yield is Monte-Carlo 
analysis (MCA). Unfortunately, a very large number of 
performance evaluations are needed for accurate es-
timation by MCA when the yield is close to 100% [2]. 
This is prohibitively inefficient, since each performance 
evaluation requires a costly circuit simulation. More ef-
ficient means to evaluate electrical performance given 
the worst-case combination of operating conditions 
and random variations is therefore necessary for robust 
circuit design; some alternatives have been presented 
in literature (cf. [2, 3]). 

In [2], the worst-case distance (WCD) metric was used to 
obtain yield estimates with less computation. The WCD 
method requires the numerical solution of an optimiza-
tion problem. This problem can be solved in significantly 
less time than it takes an MCA to obtain similar or more 
accurate yield estimates. The alternative to yield esti-
mation by WCD is the worst-case performance (WCP) 
method [2]. In WCP, the worst value of a performance is 
calculated which corresponds to a predefined paramet-
ric yield (Y). If this worst value satisfies the performance 
specification the parametric yield is not smaller than Y.

In general, both WCD and WCP require the solution of 
a non-linear optimization problem by numerical meth-
ods. Deterministic optimizations have been success-
fully applied to solve the WCD and WCP problems typi-
cal in analog integrated circuits -- including academic 
and commercial tools. These algorithms have been 
derivative-based, so that the sensitivity of the electrical 
performances to the value of the operating and statisti-
cal parameters was needed (e.g. [2] and the references 
therein, [3]). In this paper a new deterministic and de-
rivative-free method is proposed to solve the WCD and 
WCP problems. The method is based on mesh adaptive 
direct search (MADS)[4]. 

The remainder of the paper is organized as follows: 
section 2 introduces the mathematical formulation of 
WCD and WCP. Section 3 gives an overview of MADS 
and modifications introduced by the proposed ap-
proach. The implementation details are the subject of 
Section 4. Section 5 presents the results and compares 
them to the results obtained with a derivative-based 
algorithm implemented in a commercial tool (WiCkeD 
[5]). The concluding remarks are given in Section 6. 

Notation. Inequalities apply to vectors component 
wise. 0 denotes a vector of all-zeros. The i-th compo-
nent of vector ν is denoted by νi. An element of a matrix 
A is denoted by aij. The ramp function ramp(x) is zero for 
x<0 and equal to x otherwise. The group of orthogonal 
transformations of Rn is denoted by On. The i-th ortho-
normal basis vector is denoted by ei. 

2 Mathematical formulation for worst-
case analysis 

Let x0 denote the vector of n0 parameters describing 
the circuit’s operating condition, also referred to as the 
operating parameters. The prescribed range of operat-
ing conditions within which the circuit must operate is 
specified by lower and upper bounds on operating pa-
rameters given by vectors xL

0 and xH
0, respectively. 

The performance of the circuit is also affected by vari-
ations of the manufacturing process which in turn are 
modeled as mutually dependent random variables. 
Without loss of generality, the set of dependent pro-
cess parameters can be mathematically transformed 
into a set of independent random variables with nor-
mal distribution. Let xS denote a vector representing a 
realization of these  random variables. Components of 
xS are also referred to as the statistical parameters. By 
assumption the joint probability density of the statisti-
cal parameters can be expressed as 
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Circuit behavior is evaluated by a number of perfor-
mances, for example power, amplification gain, and 
bandwidth. The performances are ordered in a vector 
f with length m. Their value for any specific circuit will 
depend on the value of the operating parameters x0, 
as well as the statistical parameters xS. Component fi of 
f is the value of a map computed by a simulator. With 
some abuse of notation one can write fi(x0, xS). For a 
circuit to behave correctly at (x0, xS) it must meet a set 
of performance specifications of the form fi(x0, xS) ≥Gi, 
where Gi denotes the target value corresponding to fi. 
Performance specifications of the form fi(x0, xS) ≤Gi can 
be taken into account by replacing fi(x0, xS) and Gi with 
−fi(x0, xS) and −Gi. A well designed circuit behaves cor-
rectly across the given range of operating conditions 
and for a large percentage of circuits manufactured 
in the presence of manufacturing process variations 
(yield). The yield corresponding to performance fi can 
be computed by integrating (1) over the acceptance 
region of fi (shaded region in Figure 1) defined as 
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where fi
w (xS) is the worst value of fi at xS across the pre-

scribed range of operating parameters and

( ) ( )Si
xxx

S
iw xxfxx

HL
,minarg 0

,
0

000 ≤≤
=   (3)

This integral cannot be computed analytically and is 
usually estimated with a Monte Carlo analysis. 
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Figure 1: The worst-case point xS
w,i and the linearization 

(dashed line) of fi
w (xS) =Gi (thick line) in the space of 

the statistical parameters. The acceptance region of fi 
is shaded. Replacing the nonlinear specification with 
its linearization at xS

w,i makes it possible to compute a 
yield estimate using (6). The approximation introduc-
es an error equal to the integral of (1) over the region 
shaded in dark grey. 

A good yield approximation can be obtained by replac-
ing the performance with its linear model computed 
at the worst-case point (xo

w,i (xS
w,i), xS

w,i) [2]. Figure 1 il-
lustrates the worst-case point in the space of statistical 
parameters when ns=2; the sphere ||xS|| =bi is tangen-
tial to the boundary of the acceptance region at xS

w,i. 
The statistical parameters corresponding to this point 
are given by
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The worst-case distance of fi is defined as 
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If fi
w(xS) satisfies the design requirements at xS = 0 the 

worst case distance is positive, otherwise it is negative. 
By linearizing fi

w(xS) ≥ Gi at the worst-case point a yield 
approximation can be computed analytically by inte-
grating (1) over the light grey region in Figure 1. The 
obtained yield approximation is

( )( ) ( )iiii GfYerfY ≥≈+= 2/1
2
1

β   (6)

The difference between the actual and estimated yield 
corresponds to the integral of (1) over the dark grey re-
gion in Figure 1. 

The computationally intensive component of yield es-
timation is to find the solution to problem (4). For small 
yields the computational effort is in the same order of 
magnitude as that required by a Monte Carlo analysis. 
For large yields the number of the required Monte Car-
lo samples grows rapidly as the yield approaches 100% 
while the computational effort for solving (4) remains 
the same. Typically a designer tunes the design param-
eters until bi (and the yield) is maximized. 

Problem (4) has a general nonlinear constraint that can 
only be evaluated by circuit simulation. An alternative 
approach to yield maximization is often used. Instead 
of computing the WCD, the WCP corresponding to a 
given b can be computed.
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The constraint in the WCP formulation is a convex 
quadratic function that can be evaluated without cir-
cuit simulation. If the i-th performance fi satisfies fi (x0

w,i, 
xS

w,i) ≥ Gi, then the WCD (bi) and corresponding yield es-
timate (Yi) will satisfy bi ≥ b and Yi ≥ ½ (1 + erf (b/e2)).

Problems (4) and (7) are typical problems for which the 
initial deterministic method of choice is a gradient-
based optimization algorithm, for example a sequen-
tial quadratic programming (SQP) or an interior point 
method [6]. An alternative is to use gradient free opti-
mization methods. Mesh adaptive direct search (MADS) 
is one of these methods. MADS is capable of handling 
problems with nonsmooth objective function and con-
straints. Unfortunately as most derivative-free meth-
ods MADS converges slowly to a solution. To accelerate 
its convergence one can use quadratic models of the 
objective and of the constraints to compute promis-
ing points that speed up the algorithm’s progress. The 
quadratic model can be built gradually by applying an 
update formula to the current approximation of the 
Hessian matrix. 

3 Mesh Adaptive Direct Search

MADS is a family of algorithms where the steps the al-
gorithm takes to explore the search space lie on a grid. 
In the presented algorithm the grid is defined as 
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where Dk
m denotes the mesh size parameter. The algo-

rithm solves problems of the form

 ( )xfnx ℜ⊇Ω∈
min     (9)

where W = {x : xL ≤ x ≤ xH ∧ ci (x) ≤ 0, i = 1, …, nc} denotes 
the set of feasible points. The lower and the upper 
bounds on the components of x are given by vectors 
xL and xH, respectively. Nonlinear inequality constraints 
are defined by functions ci (x). For convenience the nc 
functions ci (x) are joined in a vector-valued function 
c (x). The incumbent solution in the k-th iteration and 
the corresponding value of f are denoted by xk and fk, 
respectively. Any point that is considered to be suffi-
ciently good to replace the incumbent solution is re-
ferred to as an improving point. The initial point x0 ∈W 
corresponds to the first iteration (k = 0). MADS can han-
dle constraints with the extreme barrier approach by 
replacing  with +∞, whenever x ∉W. Unfortunately this 
also requires the initial point to be feasible. Infeasible 
initial points can be handled by using a filter [7][8]. The 
filter approach decides whether a point can replace the 
incumbent solution by applying a bi-objective criteri-
on based on the values of the objective and constraints 
at points evaluated in the past. 

Algorithm 1: k-th iteration of the proposed algorithm 
based on the MADS framework. 
1. Complete the quadratic model by computing the 

gradient of f and the Jacobian of c.
2. Make the model convex by replacing the Hessian 

H with H + ∈I, ∈ ≥ 0. 
3. Compute s by solving the convex quadratic mod-

el and rounding the result to Vk.  
4. Evaluate f and c at x = xk + s. If x is an improving 

point, set xk+1: = x and go to step 8. 
5. Generate the set of poll directions Dk ⊆ Gk. 
6. Evaluate f and c at x = θ(xk + d) for d ∈Dk.
 If x is an improving point set xk+1: = x. 
 If the step resulting in an improving point was 

cut, go to step 8, else go to step 7. 
 When Dk is exhausted go to step 8. 
7. Evaluate f and c at x = -θ(xk + 2(x – xk)). If x is an 

improving point, set xk+1: = x.
8. If xk+1 = xk, set lk+1: = lk + 1;
 else if step 7 failed to produce an improving point, 

set lk+1: = lk; 
 else if xk+1 ≠ xk, the step resulting in xk+1 was not 

cut, and lk > 0 set lk+1: = lk - 1;
 else set lk+1: = lk.

Steps 1-4, 5-6, and 7 of Algorithm 1 are also referred 
to in the MADS literature as the search, the poll, and 

the speculative step, respectively.  Set Dk is referred 
to as the set of scaled poll directions. The length of a 
scaled step is determined by the step size parameter 
Dk

p. Function θ maps points that violate bounds (xL and 
xH) to points that satisfy them. A step is cut if θ(x) ≠ x. Al-
though the proposed approach uses quadratic models 
the convergence properties of the MADS framework 
enable it to find a solution of the optimization problem 
even when the search step is omitted. 

Refining subsequences are sequences of iteration in-
dices k ∈K for which Dk

p → 0. The MADS convergence 
theory applies to refining subsequences. More details 
can be found in [4] (extreme barrier approach) and [7] 
(filter-based approach). 

Algorithm 1 differs from the basic MADS framework 
published in the literature ([4][7][9]) in several ways. 
The normalized poll directions are uniformly distribut-
ed on the unit sphere. The algorithm constructs a quad-
ratic model of the objective function using a minimum 
Frobenius norm-based approach and a linear model 
of the constraints by means of regression. A quadratic 
programming solver then uses the model to compute 
a search step that accelerates the convergence. The 
point acceptance criterion in the search and the poll 
step is based on a filter instead on strict descent. 

The algorithm that generates the ordered poll steps 
and the definition of function θ are the subject of sec-
tion 3.1. The construction of the quadratic model and a 
more detailed description of the search step are given 
in section 3.2. The conditions under which a point is 
considered to be an improving point are given in sec-
tion 3.3. The relation between the mesh index (lk), the 
mesh size, and the step size is the subject of section 3.4. 

3.1 The poll step and the set of scaled poll directions

The poll step (steps 4-6 of Algorithm 1) is the one that 
guarantees the convergence properties of MADS [4][7]. 
The scaled poll directions d ∈ Dk are ordered accord-
ing to the angle they form with the last search (s) or 
poll (d) direction that resulted in an improving point 
[9]. The function and the constraints are evaluated at 
points xk + d corresponding to the ordered scaled poll 
directions. If xk  + d violates any of the bounds imposed 
by xL and xH it is replaced by θ(xk  + d). Function θ modi-
fies the components of xk  + d that violate bounds by 
replacing them with the value of the corresponding 
violated bound. This has the effect of sliding the point 
along the violated boundary. The evaluation of points 
in the poll step is interrupted as soon as an improving 
point is found (greedy evaluation). 
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The set of scaled poll directions Dk is generated by ap-
plying an orthogonal transformation 0tk ∈On  to n + 1 
vectors forming a regular n simplex ν (cf. [10] on how to 
construct ν) and scaling the resulting vectors with Dk

p. 
This results in set Uk = {Dk

p 0tk v:v ∈ V} whose members 
are rounded to the nearest points in Gk to obtain Dk. 
Index tk plays a role in ensuring the convergence prop-
erties of the algorithm and will be discussed later. 

The sequence of orthogonal transformations {0i}
Q

i=0 is 
constructed by Algorithm 2 from a sequence of realiza-
tions of a random matrix with independent normally 
distributed random elements {Ni}

Q

i=0.

Algorithm 2: Constructing a sequence of orthogonal 
transformations [11].
1. Apply QR decomposition to Ni resulting in Qi and 

Ri. 
2. Construct diagonal matrix Di with dii = 1 if rii ≥ 0 

and dii = -1 otherwise. 
3. Qi  =  Qi Di. 

Sequence {0i}
Q

i=0 is uniformly distributed (i.e. distrib-
uted according to the Haar measure on On [11]). Due to 
this the normalized vectors from the sequence of sets 
{Ui}

Q

i=0 are uniformly distributed (and consequently 
dense) on the unit sphere. Furthermore, if the mesh 
size parameter satisfies Dk

m →  0 the union of sets Dk is 
also dense on the unit sphere (which is required by the 
MADS convergence theorem [4]) and the distribution 
of normalized poll directions converges to the uniform 
distribution on the unit sphere.  

3.2 The quadratic model and the search step

MADS can be significantly improved if steps 1-4 of Al-
gorithm 1 examine points obtained by solving a model 
of the original optimization problem. In the presented 
method a quadratic model of the objective and a linear 
model of the constraints are constructed. The model 
can be formulated as 

 ( ) ( ) ( ) ( ) ( )kk
T

k
T

kf xfxxgxxBxxxm +−+−−=
2
1
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Where B, g, and J denote the approximate Hessian and 
the approximate gradient of the objective f(x), and the 
approximate Jacobian of the constraints c(x), respec-
tively. The model optimization problem can now be 
written as 
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The approximate Hessian matrix is obtained by repeat-
edly applying an update formula. The initial Hessian 
approximation is set to an all-zero matrix. Every time 
the algorithm evaluates three collinear points x, x + 
a+p, and x + a-p (i.e. after every speculative step that 
does not violate the bounds) the directional second 
derivative can be approximated as 
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Let B and B+ denote the approximate Hessian and its 
updated value. When the second directional derivative 
is available the Hessian update formula from [12] can 
be used. 
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It is more common the points are not collinear. In that 
case an update technique based on least Frobenius 
norm updating (LFNU) is used [13]. The proposed algo-
rithm uses is a special case of LFNU for n + 2 points. It is 
applied every time a new point is evaluated to update 
the Hessian of the objective f. 

The linear part of the model is computed by means of 
linear regression [14]. Up to 2n+1 most recently evalu-
ated points (x) satisfying llx - xkll ≤ ρDk

p are selected for 
regression. The regression computes vector g for which 
mf(x) is the closest fit to f(x) at the selected points. Simi-
larly the approximate Jacobian J of the constraints is 
obtained by fitting mc(x) to c(x). 

Whenever a quadratic model of the problem is success-
fully computed (i.e. the Hessian update and the linear 
regression are successful) it is used for ordering the 
scaled poll directions instead of the smallest angle cri-
terion. The primary criterion for model-based direction 
ordering is the cumulative constraint violation com-
puted as the sum of squares of positive components in 
vector mc(x). The secondary criterion is the value of the 
quadratic model mf(x). 

The obtained model is used for computing a trial point 
for the quadratic search step (step 1 of Algorithm 1). For 
this purpose problem (12) is solved using a quadratic 
program solver [15]. The solver can handle only posi-
tive definite Hessians matrices. Therefore B is replaced 
with B + ∈I and an additional constraint of the form 
llx - xkll∞ ≤ ρ−Dk

p is imposed whenever B is not positive 
definite. The value of ∈ > 0 is chosen by repeatedly ap-
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plying Cholesky decomposition to B + ∈I for increasing 
values of  until the decomposition succeeds [6]. 

3.3 Point acceptance criterion

When the initial point x0 is feasible a point x can be 
considered as improving if it is feasible and f(x) < f(xk). 
Often the initial point x0 is not feasible (i.e. x0 ∉W). Such 
a situation occurs when one tries to solve (4) to obtain 
the worst-case distance and chooses 0 as the initial 
value of the statistical parameters. In this case the non-
linear constraints cannot be handled with the extreme 
barrier approach. A possible alternative is to use a point 
acceptance criterion based on a filter [8]. 

Figure 2: The regions with acceptable (light gray) and 
dominating (dark gray) points for an optimization 
problem given by f(x1, x2) = x2

1 + x2
2 (dashed contours) 

and c(x1, x2) = – x1 – x2 + 2 (dotted contours). The points 
corresponding to the filter entries are marked by dark 
dots. The white dot marks the solution of the problem 
at (1, 1). hmax = 2.

The acceptance criterion based on a filter takes into ac-
count an improvement of the objective value, as well 
as an improvement of the feasibility. For that purpose a 
function is defined that expresses the constraint viola-
tion. 

 ( ) ( )( )∑ == cn

i xcrampxh 1 1
                  (15)

For a feasible point the corresponding value of h(x) is 
zero. A filter entry is a tuple of the form (f(x), h(x)). A 
filter is a set of mutually non-dominated filter entries. 
A tuple (f1, h1) dominates (f2, h2) if f1 ≤ f2, h1 ≤ h2 and the 
two tuples are not equal. Initially the filter contains only 
(f(x0), h(x0)). A point x is said to be  

- dominating if the filter is empty or (f(x), h(x)) 
dominates at least one filter entry, 

- dominated if at least one filter entry dominates 
(f(x), h(x)) or h(x) >hmax. 

- acceptable otherwise. 

Figure 2 and Figure 3 illustrate a 2-dimensional prob-
lem and a filter with 5 entries. Adding a point  to the fil-
ter means that the corresponding filter entry (f(x), h(x)) 
is added to the filter. Dominating points and accept-
able points are always added to the filter immediately 
after they are evaluated. The incumbent solution is al-
ways a member of the filter. Adding a dominating point 
implies that at least one dominated point is removed 
from the filter so that the filter entries remain mutually 
non-dominated. An acceptable point does not domi-
nate any of the filter points and thus no points are re-
moved from the filter when the corresponding entry is 
added. Dominated points are never added to the filter. 
If parameter hmax is set to 0, MADS behaves as if the ex-
treme barrier approach had been used for handling the 
constraints.

For every filter point its position is defined by sorting 
the filter entries according to h. The filter entry cor-
responding to a feasible point is assigned position 0 
(rightmost dark dot in Figure 2, leftmost dark dot in 
Figure 3), while infeasible filter entries are assigned in-
teger positions starting from 1. A point examined by 
the search step is considered as an improving point if 
it is not dominated. A point examined in the poll step 

Figure 3: The filter entries (dark dots) and the solution 
(white dot) of the problem in Figure 2 in the f-h space. 
Dark gray and light gray regions correspond to domi-
nating and acceptable points, respectively. 
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and in the speculative step is considered as an improv-
ing point if it is not dominated and its position is not 
higher than the position of the incumbent solution. 
This effectively requires that the poll and the search 
step prioritize improving feasibility over improving 
the objective. When the incumbent solution is feasible 
these two steps behave as if the extreme barrier ap-
proach had been used. 

3.4 Updating the mesh and the step size

Iterations of Algorithm 1 are assigned a mesh index lk 
with initial value l0 = 0. The mesh and the step size pa-
rameter depend on lk. 

( )  ( )γ+∆∆=∆ − 1/,1min 0
2 klm

k                  (16)

 klp
k

−∆=∆                    (17)

This strategy (see step 8 of Algorithm 1) refines the 
mesh and shortens the step when the algorithm is not 
making progress (i.e. fails to find an improving point). 
The mesh index is not changed if the speculative step 
fails to produce an improving point or if the improving 
point is obtained with a cut step. Otherwise the mesh 
is coarsened and the step size is increased, but never 
above its initial value. 

Rounding can affect the set of unrounded scaled poll 
directions Uk to such extent that Dk no longer positively 
spans ℝn. The effect of rounding is more pronounced 
when ratio Dp

k/D
m

k is small. Because

   γγ +∆≥+∆=
∆
∆

121 00
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m
k

p
k                 (18)

the aforementioned situation can be avoided if one 
chooses a sufficiently large . It can be shown that γ = 
n3/2/2 is an appropriate choice for all D0 ≥ 1. 

The normalized poll directions from a refining subse-
quence {Dk}k∈K must be dense on the unit sphere [4]. 
This is true if the refining subsequence corresponds to 
the complete sequence {Ni}

Q

i=0.Therefore index  is cho-
sen in the following manner. 

 





=kt
ikikk llforl

〈
≥ max  ,
othervise ,max1 iki

t
〈

+                  (19)

Index tk increases from iteration to iteration with the 
exception of iterations that correspond to the finest 
observed mesh over 0..k. As the mesh index of itera-
tions forming a refining subsequence takes consecu-
tive values from {0,1,2, …} the same values are also as-

signed to  thereby causing {Dk}k∈K to correspond to the 
complete sequence {Ni}

Q

i=0. 

4 Finding the worst-case point

The outline of the proposed approach comprises the 
same steps as [5]. The SQP-based optimization algo-
rithm is replaced with the proposed version of MADS. 
The initial point in the space of statistical parameters 
is computed from the linearized optimization problem. 
An extended stopping criterion is proposed based on 
the approximate gradient of the circuit’s performance. 

In the beginning xs = 0, x0 is set to the nominal value of 
the operating parameters x0

nom, and the set of relevant 
statistical parameters is empty. The procedure for solv-
ing problem (4) and problem (7) is given by Algorithm 3. 

Algorithm 3: One pass of the main algorithm for solv-
ing problem (4) / problem (7)

Solve ( )Sixxx
w xxfx HL ,min arg 0

2
0

000 ≤≤
= . If ( )2

00,
w

i xxf , 

set 2
00 : wxx = . 

1. Compute the approximate sensitivity of fi to sta-
tistical parameters.  

2. Update the set of relevant statistical parameters 
and compute the initial point for step 4. 

3. Solve (4) or (7) in the space of relevant statistical 
parameters to obtain the new value of xS.

In step 1 of Algorithm 3 the set of worst operating pa-
rameters is determined. The performance correspond-
ing to (x0, xS) is evaluated. Every operating parameter 
is perturbed to its respective upper and lower value 
resulting in the need to evaluate 2n0 points by circuit 
simulation. The results are used for constructing the 
initial vector of operating parameters (x0

w1). Every com-
ponent of this vector is equal to the nominal value, the 
upper bound, or the lower bound of the corresponding 
operating parameter, whichever produced the worst 
value of fi. The optimization in step 1 of Algorithm 3 is 
completed with the MADS algorithm as proposed in 
section 3 starting from x0

w1 and using the extreme bar-
rier approach. Steps taken by the optimizer are scaled 
in such manner that a step of length 1 in direction of 
any operating parameter corresponds to 1/16 of the 
difference between the upper and the lower bound. 

The sensitivity to the statistical parameters (step 2 of 
Algorithm 3) is computed at (x0, xS) using forward differ-
ences. The parameters are perturbed by 1/64 of the dif-
ference between the lower and the upper bound (-10 
and 10, respectively). Let Dx and Dfi denote the param-
eter perturbation and the corresponding difference in 
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the performance, respectively. The components of the 
gradient with respect to the statistical parameters (∇S fi) 
can then be approximated as Dfi /Dx. 

The obtained sensitivity information is used for elimi-
nating the statistical parameters that contribute little 
to the behavior of fi (step 3 of Algorithm 3). For this pur-
pose the absolute performance differences Dfi are 
ordered and all parameters that contribute less than 
1% to the total change of fi are removed in increasing 
order of contribution until the cumulative contribution 
of the removed parameters reaches 25% or there are 
no statistical parameters left. The remaining statistical 
parameters are added to the set of relevant statistical 
parameters. 

Let gS denote the estimated gradient in the space of 
statistical parameters. Components of the gradient not 
corresponding to relevant parameters are set to 0. For 
problem (4) the initial point is obtained by updating xS 
to

( )
S

S

ii
S g

g
Gxf

x 2
0 0, −

−                   (20)

For problem (7) xS is replaced with 

 
β2

S

S

g
g

−                    (21)

MADS is then used for solving the main optimization 
problem (step 4 of Algorithm 3) in the space of statisti-
cal parameters. The value of hmax is chosen as max(100, 
h (x0)) so that the initial point is always added to the fil-
ter. The scaling of parameters is the same as in step 1 of 
Algorithm 3. The main optimization in case of problem 
(7) is stopped if the constraint satisfaction condition 
c(x)< bec and the gradient angle condition ∠(∇S f, - 
∇S c) < ea are satisfied (note that c(x) is a scalar because 
the problem has only one nonlinear constraint). These 
two stopping conditions are applied only if the step 
satisfies Dp

k < 0.5. The constraint satisfaction condition 
for problem (4) is formulated somewhat differently as 
|c(x)| < 3||gS||ec. In the presented examples ec = 10-2 
and ea = 15o are used. Regardless of these stopping con-
ditions MADS is stopped when Dp

k drops below 0.01.

Algorithm 3 is repeated in multiple passes until the set 
of relevant statistical parameters remains unchanged 
in step 3 and the accepted solution in step 1 of Algo-
rithm 3 does not change fi (x0, xS) by more than 1% 
compared to the difference between fi (x0

nom, 0) and fi 
(x0, 0) from the first pass. 

The following values of optimizer parameters were 
used: D = 4, D0 = 220, ρ = D2, ρ− = 1. For problem (7) the 
gradient of the constraint with respect to the statisti-
cal parameters can be expressed explicitly as 2xS and 
is not computed numerically. Similarly for problem (4) 
the gradient and the Hessian of the objective can be 
expressed as 2xS and I (identity matrix), respectively. 

5 Application and verification of the 
approach

The proposed approach was implemented in the PyO-
PUS framework [16] and its performance was compared 
to that of a commercial worst-case analysis tool WiCk-
eD [5]. Both algorithms were tested on two circuits: a 
Miller operating transconductance amplifier (OTA) in 
Figure 4 and a folded cascode operating transconduct-
ance amplifier (FCOTA) in Figure 5. 

Figure 4: Miller transconductance amplifier. 

Figure 5: Folded cascode transconductance amplifier.  

Both circuits have 3 operating parameters (tempera-
ture, supply voltage, and bias current). A mismatch 
model with two statistical parameters per transistor 
was used. Global variations of the manufacturing pro-
cess were modeled with 10 statistical parameters. The 
circuits in Figure 4 (Figure 5) have 26 (42) statistical pa-
rameters. The results are listed in Table 1. The first and 
the second column list the names of the performances 
and their types (i.e.fi > Gi or fi < Gi). The worst-case per-
formances at b = 3 obtained by solving problem (7) are 
listed in columns titled WC. The number of circuit eval-
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uations and the number of algorithm passes are listed 
in the columns to the right of the WC column. 

Problem (4) is solved with Gi set to the WC value at b = 
3 obtained by WiCkeD (third column). The worst-case 
point obtained by solving this problem lies at ||xS|| = 3. 
The obtained value of bi is listed in columns titled WCD 
and the number of circuit evaluations and algorithm 
passes is listed in the columns to the right of the WCD 
column. 

The results in Table 1 show that the proposed ap-
proach is capable of finding the solution of problem (7) 
within 5% accuracy. The two cases where the accuracy 
was worse than 5% are marked with an asterisk in the 

WC column. The settling time (rise) of the Miller OTA 
was different due to the noise in the performance.  In 
case of the PSRR VSS performance of the FCOTA circuit 
MADS converged to a different local minimizer. A more 
pessimistic worst case value was found by MADS in one 
case (shaded cell in the table). The number of circuit 
evaluations required by MADS was in 7 cases (marked 
with an asterisk) significantly worse than that required 
by WiCkeD. On the other hand in two cases MADS was 
significantly faster than WiCkeD (shaded cells in the ta-
ble). On the remaining cases both algorithms exhibited 
similar performance. 

Solving problem (4) is somewhat more challenging. The 
proposed approach found the same solution within 5% 

Table 1: Summary of the results obtained with WiCkeD and the proposed MADS-based algorithm. A WC/WCD value 
(the number of evaluations) that is more than 5% (20%) worse than the corresponding result obtained by WiCkeD is 
denoted by an asterisk. 

WiCkeD MADS
Circuit / Performance type WC Evals WCD Evals WC Evals Passes WCD Evals Passes
Miller OTA
Swing [V] > 1.43 139 2.99 145 1.43 147 2 3.00 *176 2
Gain [dB] > 68.0 88 3.00 94 68.0 98 1 3.00 106 1
UGBW [MHz] > 1.61 93 3.00 100 1.61 98 1 3.02 116 1
Phase margin [o] > 67.3 129 3.00 123 67.3 *299 2 3.04 *438 2
CMRR [dB] > 65.2 98 3.00 104 65.3 *150 2 3.00 *166 2
PSRR VDD [dB] > 85.0 124 3.00 112 85.3 *396 3 *3.21 *398 3
PSRR VSS [dB] > 61.0 92 3.00 98 61.0 98 1 3.00 106 1
Settling ↓ [ms] < 0.892 134 3.00 151 0.892 145 2 3.01 165 2
Settling ↑ [ms] < 1.04 108 3.00 116 *1.03 102 1 3.00 *195 2
Slew ↓ [V/ms] > 1.10 94 3.00 96 1.10 99 1 3.00 115 1
Slew ↑ [V/ms] > 0.953 461 3.06 196 0.960 101 1 3.09 *260 2
FCOTA
Offset (high) [mV] < 11.2 124 3.02 194 11.2 *202 2 3.00 211 2
Offset (low) [mV] > -11.9 124 3.03 194 11.9 *200 2 3.00 231 2
Swing [V] > 0.478 122 3.00 127 0.476 130 1 2.95 130 1
Gain [dB] > 70.7 125 3.03 131 70.8 *291 2 3.02 *332 2
UGBW [MHz] > 6.28 130 3.00 137 6.28 133 1 3.00 149 1
Phase margin [o] > 85.6 222 3.00 227 85.6 *368 2 3.01 *493 3
CMRR [dB] > 60.8 290 3.06 265 60.8 *460 2 3.00 *456 2
PSRR VDD [dB] > 55.8 236 3.00 207 58.0 282 2 3.12 *642 2
PSRR VSS [dB] > 54.6 315 3.00 227 *58.3 249 2 *3.17 *315 2

IRN@100Hz [mV/ eHz] < 3.17 126 3.00 133 3.17 133 1 3.01 151 1

IRN@10kHz [mV/ eHz] < 0.321 126 3.00 133 0.321 133 1 3.02 154 1

IRN@1MHz [mV/ eHz] < 59.4 126 3.03 132 59.3 133 1 3.00 144 1

1/f corner [kHz] < 437 122 3.00 128 436 143 1 3.01 147 1
Settling ↓ [ms] < 0.131 142 3.00 148 0.131 135 1 3.00 146 1
Settling ↑ [ms] < 0.127 148 3.00 154 0.127 134 1 3.01 180 1
Slew ↓ [ms] > 4.17 207 3.00 202 4.17 203 2 3.00 *250 2
Slew ↑ [ms] > 4.28 196 3.00 213 4.28 205 2 3.00 255 2
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accuracy in all but two cases marked with an asterisk 
in the WCD column of Table 1. Both of them (as well 
as the PSRR VDD performance of FCOTA) are the result 
of convergence to a different local minimizer. In such 
cases a fair comparison with WiCkeD is not possible. 
When the number of circuit evaluations is considered 
both approaches exhibit similar performance on more 
than half of the performances. The cases where the 
proposed approach is significantly slower than WiCkeD 
are marked with an asterisk. 

All optimization problems except for two are solved in 
one or two algorithm passes. Both MADS and WiCkeD 
face the same disadvantage originating from the local 
nature of the underlying optimization algorithms. Due 
to it the obtained solution can be a local minimizer and 
not the actual solution of problem (4) or (7) because 
the outcome greatly depends on the choice of the ini-
tial point. 

MADS performs best on noisy nonlinear problems 
for which points exist where the function or the con-
straints cannot be evaluated (i.e. the simulator fails to 
converge or the circuit’s performance cannot be evalu-
ated). For such problems the finite difference approxi-
mation of the gradient cannot be computed and classi-
cal optimization methods like SQP used in commercial 
tools exhibit slow progress or fail. On these problems 
we expect MADS to outperform commercial gradient-
based tools. 

6 Conclusion

Finding the worst performance and the worst-case dis-
tance of a circuit’s performance are important subprob-
lems that arise in the process of automated integrated 
circuit sizing. The solution to these problems enables 
the designer to verify the satisfaction of the minimum 
yield requirement. This is an accurate and less costly 
alternative to yield estimation by Monte-Carlo analy-
sis. An approach for solving both problems by means 
of MADS was presented. Several extensions were im-
plemented in the general MADS framework that make 
it possible for the algorithm to rapidly close in on the 
solution of the optimization problem. The proposed al-
gorithm was tested on two real world integrated circuit 
design problems. The results were compared to the re-
sults obtained with a commercial worst-case analysis 
tool (WiCkeD) that uses a gradient-based optimization 
algorithm. The results show the proposed approach is 
competitive with the approach used in WiCkeD. 
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