
142

Original scientific paper

 MIDEM Society

Zynq-based System for Extracting Sorted Subsets
from Large Data Sets
V. Sklyarov1, I. Skliarova1, A. Rjabov2, A. Sudnitson2

1University of Aveiro / IEETA, Campus Universitário de Santiago, Aveiro, Portugal
2Tallinn University of Technology, Tallinn, Estonia

Abstract: The paper describes hardware/software architecture of a system for extracting the maximum and minimum sorted subsets
from large data sets, two methods that enable high-level parallelism to be achieved, and implementation of the system in recently
appeared on the market Zynq-7000 microchips incorporating a high-performance processing unit and advanced programmable logic
from the Xilinx 7th family. The methods are based on highly parallel and easily scalable sorting networks and the proposed technique
enabling sorted subsets to be extracted incrementally with very high speed that is close to the speed of data transfer through high-
performance interfaces. The results of implementations and experiments clearly demonstrate significant speed-up of the developed
software/hardware system comparing to alternative software implementations.

Keywords: processing system; programmable logic; system-on-chip; sorting networks; hardware/software co-design

Sistem na osnovi Zynq za izluščitev razvrščenih
podsklopov iz obsežnih podatkovnih sklopov
Izvleček: Članek predstavlja programsko/strojno zasnovo sistema za izluščitev največjih in najmanjših razvrščenih podsklopov v
obsežnih podatkovnih sklopih. Predstavljeni sta dve metodi, ki omogočata visoko stopnjo vzporednosti in implementacijo sistema v
tržnem ZYNG-7000 mikročipu na osnovi programabilne logike Xilinx sedme generacije. Metode temeljijo na vzporedni in enostavno
razširljivih omrežjih ter omogočajo izluščitev podsklopov s hitrostjo blizu hitrosti prenosa podatkov. Rezultati dokazujejo veliko
pohitrenje programsko/strojnih rešitev v primerjavi s programskimi rešitvami.

Ključne besede: processing system; programmable logic; system-on-chip; sorting networks; hardware/software co-design

* Corresponding Author’s e-mail: skl@ua.pt

Journal of Microelectronics,
Electronic Components and Materials
Vol. 45, No. 2 (2015), 142 – 152

1 Introduction

All Programmable Systems-on-Chip (APSoC) from
Zynq-7000 family [1,2] combine on the same microchip
the dual-core ARM CortexTM MPCoreTM-based high-
performance processing system (PS) with advanced
programmable logic (PL) from the Xilinx 7th family and
may be used effectively for the design of hardware ac-
celerators in such areas as hard real-time systems [3],
image [4] and data [5] processing, satellite on-board
processing [6], programmable logic controllers [7],
driver assistance applications [8], wireless networks [9],
and many others [2]. Interactions between the PS and
PL are supported by different interfaces and other sig-
nals through over 3,000 connections [1]. Available four
32/64-bit high-performance (HP) Advanced eXtensible
Interfaces (AXI) and a 64-bit AXI Accelerator Coherency

Port (ACP) enable fast data exchange with theoretical
bandwidths shown in [1].

Zynq APSoC design flow includes the development of
hardware in the PL [10] (supported by available Xilinx
IP cores) and software in the PS [11] for different types
of applications such as standalone (bare metal) [12],
running under an operating system (e.g. Linux) [12] and
combined [13]. Hardware implemented in the PL can
be the same for standalone and Linux applications but
software programs use different functions and interac-
tion mechanisms [12]. Since bare metal projects are
generally faster, we will consider them as a base which
does not exclude using the results for projects running
under operating systems. The latter may benefit from
available drivers and other support [12]. Since both

143

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

types of projects can run in parallel in different cores
[13] they may be combined if required.

Many electronic, environmental, medical, and biologi-
cal applications need to process data streams produced
by sensors and measure external parameters within
given upper and lower bounds (thresholds) [14]. Let us
consider some examples. Applying the technique [15]
in real-time applications requires knowledge acquisi-
tion obtained from controlled systems (e.g. plant). For
example, signals from sensors may be filtered and ana-
lysed to prevent error conditions (see [15] for additional
details). To provide more exact and reliable conclusion
a combination of different values need to be extracted,
ordered, and analysed. Similar tasks appear in monitor-
ing thermal radiation from volcanic products [16], fil-
tering and integration of information from a variety of
different sources in medical applications [17] and so on.
Since many systems are hard real-time, performance is
important and hardware accelerators may provide sig-
nificant assistance for software products. Similar prob-
lems appear in so-called straight selection sorting (in
such applications where we need to find a task with
the shortest deadline in scheduling algorithms [18]),
in statistical data manipulation and data mining (e.g.
[19-22]). To describe one of the problems from data
mining informally let us consider an example [19] with
analogy to a shopping card. A basket is the set of items
purchased at one time. A frequent item is an item that
often occurs in a database. A frequent set of items of-
ten occur together in the same basket. A researcher can
request a particular support value and find the items
which occur together in a basket either a maximum
or a minimum number of times within the database
[19]. Similar problems appear to determine frequent
inquiries at the Internet, customer transactions, credit
card purchases, etc. requiring processing very large vol-
umes of data in the span of a day [19]. Fast extracting
the most frequent or the less frequent items from large
sets permits data mining algorithms to be simplified
and accelerated. Sorting of subsets may be involved in
many known methods from this area [e.g. 20-22].

Let us consider a system that collects data produced by
some measurements or copies such data from a data-
base. A valuable assistance for applications described
above may be provided by fast extraction of the maxi-
mum and minimum sorted subsets from the set of
collected data, where the maximum/minimum sorted
subset contains Lmax/Lmin data items. This problem can
be solved in a software only system. For example, C
function qsort permits large data sets to be sorted. Af-
ter sorting is completed, extracting the maximum and
minimum subsets may easily be done collecting them
from the top and from the bottom of the sorted set.
However, for many practical applications, such as that

are referenced in [18,19], performance of the described
above operations is important and software functions
need to be accelerated. The paper suggests methods
and high-performance implementations for solving
the indicated above problem in APSoC from the Xilinx
Zynq-7000 family.

The remainder of the paper is organized in five sec-
tions. Section 2 presents the proposed system archi-
tecture and describes overall functionality. Section 3
suggests two novel methods allowing the maximum
and minimum sorted subsets to be extracted from
large data sets. Section 4 shows how large subsets (for
which hardware resources are not sufficient) can be
computed and discusses additional capabilities. Imple-
mentation in Zynq microchip and the results of thor-
ough evaluation and comparison of software only and
software/hardware solutions with explicit indication of
the achievable accelerations are discussed in section 5.
Section 6 concludes the paper.

2 System Architecture and Functionality

The known results [2,5,12] have shown that software/
hardware solutions may be significantly faster than
software only solutions. Let us look at Fig. 1. Clearly,
software/hardware system is faster if: Ts > Tsch ≤ Tsh + Th
+ Tc, where Ts, Tsch, Tsh, Tc, Th are time intervals required for
different modules. In highly parallel implementations
software, hardware and interactions between hard-
ware and software can run concurrently. For example,
software may run in parallel with hardware; operations
in hardware over previously received data may be done
at the same time when new data are being transferred.
Thus, Tsch ≤ Tsh + Th + Tc. This paper evaluates and com-
pares software/hardware and software only solutions
taking into account all the involved communication
overheads and paying special attention to high level of
parallelism. For instance we would like communication
and application-specific operations to be overlapped
in hardware as much as possible (see Fig. 1). Note that
while hardware only designs may be the fastest, the
complexity of such designs is often limited by the avail-
able resources in the PL.

Figure 1: Software only and software/hardware sys-
tems

144

Fig. 2 presents the proposed software/hardware archi-
tecture. Extracting subsets is done in an application-
specific processing block (ASP) which is entirely imple-
mented in the PL. We will discuss the ASP in the next
section with all necessary details. There is another block
in the PL called communication-specific processing
(CSP) which interacts with the PS, i.e. it receives a large
set of data items step by step in blocks and transfers the
extracted sorted subsets. Besides, CSP is responsible for
exchange of control signals between the PS and PL.

The PS is responsible for solving the following tasks:
1. Acquiring data and saving them in either on-chip

memory (OCM) or external memory that is DDR.
2. Forming requests to extract subsets in the PL

which is done through a set of control signals.
3. Collecting extracted subsets and storing them in

OCM or external memory.
4. Verifying the results.
5. Solving exactly the same problem in software. This

point is required just for experiments and comparison.
6. Computing the consumed time.

The PL is responsible for solving the following tasks:
1. Processing control signals received from the PS

which are: a request (start) to begin data process-
ing; source address in memory of input data (i.e.
the address of the set that has to be handled); desti-

nation address in memory of output data (i.e. the
address to copy the extracted subsets); the number
of blocks Q of input data transferred from the PS
to PL; and the number of items in the last block Klast.
The PL also forms two signals that are sent to the
PS which are: an interrupt generated as soon as
the job is completed (i.e. the subsets have been
extracted and copied to memory) and the num-
ber of clock cycles consumed in the PL which is
needed for experiments and comparisons.

2. Extracting subsets on requests from the PS in
highly-parallel ASP.

3. Counting clock cycles consumed in the PL from re-
ceiving the request up to generating the interrupt.

Figure 3: Address mapping from Vivado 2014.2 block design editor

Figure 2: The proposed software/hardware architecture

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

145

Note that for experiments and comparisons some ad-
ditional signals for interactions between the PS and PL
may be needed.

There are some generic parameters for which hardware
in the PL is statically configured (see Fig. 2). They are:
 K – the number of items that are handled in hard-

ware in each block (Klast ≤ K);
 M – the size of each data item;
 Lmax – the number of items in the maximum subset;
 Lmin – the number of items in the minimum subset.

Selection of proper AXI ports is very important. Experi-
ments in [23] have shown that for transferring a small
number of data items (from 16 to 64 bytes) general-
purpose input/output ports (GPP) are always the best.
In Zynq APSoC there are four available 32-bit GPP, two
of which are masters and the other two are slaves from
the side of the PS. They are optimized for access from
the PL to the PS peripherals and from the PS to the PL
registers/memories [24]. Since the latter feature is what
we need, a master GPP was chosen for transferring con-
trol signals shown in Fig. 2. AXI ACP allows cache mem-
ory of application processing unit (APU) in the PS to be
involved for data transfers and there exists an oppor-
tunity to provide either cacheable or non-cacheable
data from/to the indicated above memories (i.e. OCM
or DDR) [23]. Mapping of memories may be done in
computer-aided design software (in our case in Xilinx
Vivado block design editor according to addresses
given in [1] and shown in Fig. 3, and in Xilinx Software
Development Kit - SDK). Experiments in [12,23] have
shown that for transferring large volumes of data items
AXI ACP is very appropriate. Thus, this port was chosen
to receive the source set from memory (OCM or DDR)
in the PL and to copy extracted subsets from the PL to
memory.

Fig. 4 gives more details about the chosen software/
hardware interactions where: solid arrows (→) indicate
who is the master (the beginning) and who is the slave
(the end); triple compound lines show control flow;
and dashed lines indicate directions of data flow (i.e.
one direction - → or both directions - ↔). Control (and
possibly a small number of additional auxiliary) signals
are transferred through GPP. An initial (source) set and
extracted subsets are copied through AXI ACP. The used
memory (OCM or DDR) is indicated by the respective
mapping both in hardware (see Fig. 3) and in software,
which in our case was described in C language, and the
mapping is done like the following:

Note that additional details about mapping with many
examples can be found in [12].

The snoop controller [1] in Fig. 4 provides cacheable
and non-cacheable access to memories (OCM or DDR)
[1]. Cache area can be either disabled or enabled in
software with the aid of function Xil_SetTlbAttributes
[25]. In particular data received from/copied to memo-
ries may be pre-cached, i.e. they can be first saved into
faster cache and then transferred with the main goal
to increase performance of communications. Note that
for standalone programs cache memory is entirely
available. For programs running under an operating
system (such as Linux) some area in cache memory
may be used by programs of the operating system and
the size of available cache memory is reduced. Many
additional details can be found in [12].

Figure 4: Hardware/software interactions

Initial (source) data set and extracted subsets are ac-
commodated in memory as it is shown in Fig. 5. All nec-
essary details about particular locations and sizes are
supplied from the PS to PL through GPP (see Fig. 2).

To extract the maximum and/or minimum sorted sub-
sets the following sequence of operations is executed:
1. The PS prepares source data in memory, calcu-

lates the number of blocks Q = N/K (the value
K is predefined), the number of items in the last
block (which can be less than K), and indicates
source and destination addresses. Here, N is the
total number of data items that have to be pro-
cessed.

#define OCM_ADDRESS 0x00000000 // OCM address (see [1] for details)
#define DDR_ADDRESS 0x16D84000 // DDR address (see [1] for details)
#define GPIO_BASE_IO_Control 0x40000000 // GPP address (see [1] for details)
#define HP_ADDRES OCM_ADDRESS // for this example OCM address is chosen

Communica�on-specific processing

AXI ACP

Burst mode

Snoop controller

512 KB cache and controller

OCM (256 KB) Memory
interfaces

Applica�on
Processing
Unit – APU

Ex
te

rn
al

 to
 A

PS
oC

DD
R

m
em

or
y

Slave

Slave (64-bit data)

Sl
av

e
(3

2-
bi

t d
at

a)

Master

Master

So�ware modules running in processing
cores

Master
Slave
Control signals

GPP

Central interconnect

Embedded
dual-port RAMControl Unit

Master

Output register Input register

Data flow

Da
ta

flo
w

ASP

Control flow

Control
flow

On-chip components

PL

PS

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

146

2. The PS sets the start signal that is permanently
tested in the PL.

3. As soon as the signal start is set, the PL transfers
blocks of data in burst mode and saves them in a
dedicated dual-port embedded block RAM (one
port is assigned for transferring data from the PS
to PL and another port for copying data from the
block RAM to PL registers considered in the next
section).

Figure 5: Accommodation of the initial data set and
the extracted subsets in memory

4. As soon as the first block is completely transferred
to the block RAM through the first port, it is cop-
ied through the second port to PL registers that
are used as inputs of sorting networks for extract-
ing subsets in ASP.

5. The maximum and minimum subsets are incre-
mentally constructed using methods from the
next section and subsequent blocks of source
data are transferred from memory to the block
RAM in parallel.

6. The block RAM is organized as a circular buffer as
it is shown in Fig. 6. If it becomes full data transfer
is suspended until space for subsequent block is
freed.

7. As soon as all Q blocks are processed the maxi-
mum and minimum subsets are ready (the details
will be given in the next section).

8. The maximum and minimum subsets are copied
from the PL to memory (see Fig. 5).

9. As soon as the previous point is completed, the
PL generates a hardware interrupt to the PS in-
dicating that the job has been finished (the de-
tails about such interrupts with examples can be
found in [12]).

10. Optionally, the PL may count the number of clock
cycles for solving the problem in hardware that it
supplied to the PS through GPP.

11. PS may solve other problems in parallel with the
PL. However, as soon as the interrupt is gener-
ated it is handled by the PS. Hence, the extracted
subsets may immediately be used, for example,
as data needed for projects of higher hierarchical
levels.

Figure 6: Block RAM organized as a circular buffer

The circular buffer in Fig. 6 is managed by the PL control
unit (see Fig. 4) that is a finite state machine. The buffer
is built in the PL block RAM which is written through
the first port (used for transfer data from the PS) and
read through the second port (used to copy data from
the block RAM to PL registers). As soon as the buffer
is full, data transfer from the PS to PL is suspended. As
soon as some area of the buffer is released (because
data have already been read) data transfer is renewed.

3 Methods for Extracting Sorted Subsets

Let set S containing N M-bit data items be given. The
maximum subset contains Lmax largest items in S and
the minimum subset contains Lmin smallest items in S
(Lmax ≤ N and Lmin ≤ N). We mainly consider such tasks
for which Lmax << N and Lmin << N which are more com-
mon for practical applications. Large and very large
subsets may also be extracted and section 4 explains
how to compute them. Experiments with such subsets
are also reported in section 5. Sorting will be done in
highly parallel networks, such as [26] or [27]. Since N
may have very large value (millions of items) it cannot
completely be processed in hardware due to unavail-
ability of sufficient resources.

Memory

source address

Th
e

nu
m

be
r N

 o
f d

at
a

ite
m

s i
n

th
e

gi
ve

n
se

t

Q blocks of data,
each of which is
handled in the PL in
parallel: Q = N/K

K items

Klast items

To the PL

From the PL

des�na�on
address Maximum

subset
Minimum

subset

Lmax items

Lmin items

M
Klast ≤ K

M bits may be
accommodated in
one or more
words of memory

Write address for the first port

Wri�ng data to block RAM
from memory

Reading data
from block RAM

Read address for
the second port

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

147

We suggest solving the problem iteratively using hard-
ware architecture of ASP shown in Fig. 7. Data are incre-
mentally received in blocks containing exactly K items
and then processed by parallel networks described
below. We mentioned above that the last block may
contain less than K items. If so, it will be extended up
to K items (we will talk about such extension a bit lat-
er). Part of sorted items with maximum values will be
used to form the maximum subset and part of sorted
items with minimum values will be used to form the
minimum subset. As soon as all Q blocks have been
handled the maximum and/or minimum subsets will
be ready to be transferred to the PS.

We suggest two methods enabling the maximum and
minimum sorted subsets to be incrementally con-
structed. The first method is illustrated in Fig. 8.

Figure 7: Basic hardware architecture for ASP

Figure 8: The first method of extracting the maximum
and minimum sorted subsets

Sorting networks SNmin and SNmax have input registers.
The minimum and maximum sorted subsets will be
built incrementally in halves of registers indicated at
the bottom part of Fig. 8. At initialization step, these
parts are pre-loaded with possible maximum and mini-
mum values which data from the source set may have.
Such values can be indicated by the PS in additional
fields through GPP or calculated in the PL. Then the fol-
lowing steps are executed:
1. The first block containing K M-bit data items is

copied from block RAM and becomes available at
the inputs of the main SN.

2. The block is sorted in parallel in the main SN
which can be done in combinational networks
from [26] (such as even-odd merger) or in se-
quential iterative networks from [27] (such as it-
erative even-odd transition network). In the last
case additional control is provided.

3. Lmax sorted items with maximum values are loaded
in a half of the SNmax input register as it is shown in
Fig. 8. Lmin sorted items with minimum values are
loaded in a half of the SNmin input register as it is
shown in Fig. 8. All the items are resorted by the
relevant sorting networks SNmax and SNmin.

4. A new block is copied from block RAM and be-
comes available at the inputs of the main SN.
Such operations are repeated until all Q-1 blocks
are handled.

5. The last block may contain less than K items and
it is processed slightly differently. As soon as all
Q blocks have been transferred from the PS to
the PL block RAM and Q-1 blocks have been han-
dled in ASP, the last block (if it is incomplete) is
extended to K items by copying the largest item
from the created minimum sorted subset. Thus,
the last block becomes complete. Clearly, largest
item from the created minimum sorted subset
cannot be moved again to the minimum subset
and the last block is handled similarly to the pre-
vious blocks.

Let as look at an example in Fig. 9.

Figure 9: Example of extracting sorted subsets using
the first method

SNmax

SNmin

Main
sor�ng

network
(SN)

Processing individual
blocks with K M-bit

items each

In
pu

t d
at

a
(K

 M
-

bi
t i

te
m

s)

Dedicated
register

Fr
om

 th
e

se
co

nd
 p

or
t o

f b
lo

ck
 R

AM

The maximum subset

The minimum subset

SNmax input register

Loading the minimum
possible value only at

ini�aliza�on step

SNmin input register

Loading the maximum
possible value only at

ini�aliza�on step

M
axim

um
 valuesMain sor�ng

network (SN)

M
inim

um
 values

Blocks of data

The maximum subsetThe minimum subset

SNmin SNmax

LmaxLmin

Lmax Lmax

Lmax

LminLmin

Lmin

L m
ax

 M
-b

it
ite

m
s f

or
 th

e
rig

ht
m

os
t s

eg
m

en
t

L m
in

M
-b

it
ite

m
s f

or
 th

e
le

�m
os

t s
eg

m
en

t

fe
ed

ba
ck

fe
ed

ba
ck

loading loading

0
0
0
0
U
U
U
U

U
U
U
U
99
99
99
99

35
70
12
29
58
71
99
92
36
11

99
92
71
70
58
36
35
29
12
11

0
0
0
0
99
92
71
70

35
29
12
11
99
99
99
99

Init Load Sort Load Sort Load Sort

Init Load Sort Load Sort Load Sort

Load Sort Load Sort Load Sort

SNmax

SNmin

M
ai

n
so

r�
ng

 n
et

w
or

k
(S

N
)

80
0
98
14
19
18
69
71
47
47

99
92
71
70
0
0
0
0

99
99
99
99
35
29
12
11

98
80
71
69
47
47
19
18
14
0

99
92
71
70
98
80
71
69

19
18
14
0
35
29
12
11

11
12
13
14
15
16
17
18
19
20

99
98
92
80
71
71
70
69

35
29
19
18
14
12
11
0

20
19
18
17
16
15
14
13
12
11

99
98
92
80
20
19
18
17

14
13
12
11
14
12
11
0

99
98
92
80
20
19
18
17

14
14
13
12
12
11
11
0

Th
e

m
ax

im
um

 su
bs

et
Th

e
m

in
im

um
 su

bs
et

Symbol U
indicates

undefined
value

a b c d e f g

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

148

It is assumed that the minimum possible value of data
items is 0 and the maximum possible value is 99 (clear-
ly, other values may also be chosen). At the first step
(a), shown in left-hand part of Fig. 9, input registers for
SNmax and SNmin are initialized, and the first block of data
becomes available for the main SN. U indicates unde-
fined values. At the next step (b) input registers are up-
dated as it is shown by dashed fragments in Fig. 9. At
step (c) a new block of data becomes available. Note
that loading the register for the main SN can be done
in parallel with copying Lmax/Lmin to SNmax/SNmin. Items
in SNmax and SNmin are sorted as soon as the relevant in-
put registers are updated. After executing steps (a) - (g)
the maximum and minimum sorted subsets are ready
(see the right-hand part of Fig. 9) for the items shown
in grey in the main SN. Clearly, this method enables the
maximum and minimum sorted subsets to be incre-
mentally constructed for very large sets.

The idea of the second method is illustrated in Fig. 10
on the same example from Fig. 9.

Figure 10: Example of extracting sorted subsets using
the second method

Now the size of the networks SNmax and SNmin was re-
duced twice (there are now just 4 M-bit inputs instead
of 8 in Fig. 9). Much like Fig. 8 both these networks have
input registers (4 M-bit registers for our example). At
initialization step SNmax and SNmin are filled in with the
minimum and maximum values which are assumed as
before to be 0 and 99. There are two additional frag-
ments in Fig. 10 which contain circuits from [28]. They
are composed of comparators shown in Knuth notation
[29]. Any comparator converts a two-item input to the
two-item output in such a way that the upper value is
greater than or equal to the lower value. Let us call cir-
cuits from [28] a swapping network. If they are applied
to two sorted subsets with equal sizes then it is guar-
anteed that the upper half outputs of the network con-

tain the largest values from two sorted subsets and the
lower half outputs of the network contain the smallest
values from two sorted subsets. If we resort separately
the upper and the lower parts then two sorted subsets
will form a single sorted set. Let us analyse the upper
swapping network in Fig. 10. At step (a) inputs of the
network are sorted subsets {0,0,0,0} and {99,92,71,70}.
Thus, two new subsets {70,71,92,99} and {0,0,0,0} are
created. Sorting them enables the maximum sorted
subset {99,92,71,70} with four items to be found on
outputs of SNmax. At step (c) inputs of the swapping net-
work are sorted subsets {99,92,71,70} and {98,80,71,69}
and two new subsets {99,92,80,98} and {70,71,71,69}
are created. Sorting them enables the maximum sort-
ed subset {99,98,92,80} to be built. At step (e) inputs of
the swapping network are sorted subsets {99,98,92,80}
and {20,19,18,17} and no swapping is done. Hence, the
maximum sorted subset is {99,98,92,80} and it is the
same as in Fig. 9. The lower swapping network in Fig.
10 functions similarly.

The second method involves an additional delay on
the comparators of swapping networks but eliminates
copying (through feedbacks in Fig. 8) from the main SN
to SNmax and SNmin. Besides, the sizes of SNmax and SNmin
are reduced twice.

Let us discuss now an attainable complexity of sorting
networks in the PL. It is shown in [5,27] that even in rela-
tively complex field-programmable gate arrays (FPGAs)
the size K is limited. For example, for even-odd merge
and bitonic merge networks [26] K cannot exceed a
few hundreds of 32-bit items even for very advanced
FPGAs (such as the largest devices from the Xilinx Vir-
tex-7 family [30]). In Zynq devices and circuits from [31]
the maximum value of K cannot exceed 100 of 32-bit
items. Iterative even-odd transition networks from [27]
permit significantly larger number of items (exceeding
thousands of 32-bit items) to be processed and they
may efficiently be used for computing sorted subsets
in hardware. Fig. 11 gives an example of the network
from [27] which permits up to K = 16 data items to be
sorted.

K M-bit data items that have to be sorted are loaded
(from block RAM) to the feedback register (FR). Sort-
ing is executed in a segment of even-odd transition
network composed of two linked lines with even and
odd comparators. Sorting is completed in K/2 itera-
tions (clock cycles) at most. Note, that almost always
the number of iterations is less than K/2 because of the
technique [27] according to which if there is no swaps
of data on the right-most line of the comparators then
sorting is completed. Note that the network [27] pos-
sesses significantly smaller combinational delays than
networks from [26]. Besides, in the proposed architec-

0
0
0
0

99
99
99
99

35
70
12
29
58
71
99
92
36
11

0
0
0
0
58
36
99
99
99
99

70
71
92
99

11
12
29
35

Init Swap Sort Swap Sort Swap Sort

Init Swap Sort Swap Sort Swap Sort

Load Sort Load Sort Load Sort

SNmax

SNmin

M
ai

n
so

r�
ng

 n
et

w
or

k
(S

N
)

80
0
98
14
19
18
69
71
47
47

70
71
71
69
47
47
19
18
29
35

99
92
80
98

0
14
12
11

11
12
13
14
15
16
17
18
19
20

99
98
92
80

14
12
11
0

20
19
18
17
16
15
14
13
12
14

99
98
92
80

11
12
11
0

99
98
92
80

12
11
11
0

Th
e

m
ax

im
um

 su
bs

et
Th

e
m

in
im

um
 su

bs
et

99
92
71
70

35
29
12
11

swapping
networks

a b c d e f

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

149

ture (see Fig. 4) iterations are done at the same time as
subsequent data are being received from the PS. Such
parallelism enables delays to be optimally adjusted al-
lowing the total performance to be improved.

4 Computing Large Subsets and
Additional Capabilities

For some practical applications the maximum and
minimum subsets may be large and the available
hardware resources become insufficient to implement
sorting networks. Indeed, in accordance with [12] the
largest sorting network that can be implemented in
Zynq microchip xc7z020-1clg484c (that will further be
used for experiments) is 512 32-bit items. The arising
problem can be solved using the following technique.
Let lmax and lmin be constraints for the upper (SNmax) and
bottom (SNmin) parts in Fig. 7, i.e. the circuits SNmax and
SNmin with larger values (than lmax and lmin) cannot be
implemented due to the lack of hardware resources or
because of some other reasons. Let the parameters for
the maximum and minimum subsets be greater than
lmax and lmin, i.e. Lmax > lmax and Lmin > lmin. In such case
the maximum and minimum subsets can be computed
iteratively as follows:
1. At the first iteration, the maximum subset con-

taining lmax items and the minimum subset con-
taining lmin items are computed. The subsets are
transferred to the PS (to memories). The PS re-
moves the minimum value from the maximum
subset and the maximum value from the mini-
mum subset. Such correction avoids loss of re-
peated items at subsequent steps. Indeed, the
minimum value from the maximum subset (the
maximum value from the minimum subset) can
appear for subsets to be subsequently construct-
ed in point 3 below and they will be lost because
of filtering (see point 3).

2. The minimum value from the corrected in the PS
maximum subset is assigned to Bu. The maximum
value from the corrected in the PS minimum sub-
set is assigned to Bl. The values Bu and Bl are sup-
plied to the PL through GPP.

3. The same data items (from memory), as in point
1 above, are preliminary filtered in the PL in such
a way that only items that are less or equal than
Bu and greater or equal than Bl are allowed to be
transferred to block RAM, i.e. computing sorted
subsets is done only for the filtered data items.
Thus, the second part of the maximum and the
minimum subsets will be computed and append-
ed (in the PS) to the previously computed subsets
(such as subsets from point 1).

4. The points 2 and 3 above are repeated until the
maximum subset with Lmax items and the mini-
mum subset with Lmin items are computed.

Note, that if the number of repeated items is greater
than or equal to lmax/lmin, then the method above may
generate infinite loops. This situation can easily be rec-
ognized. Indeed, if any new subset (that is sent from
the PL to the PS) contains the same value repeated K
times then an infinite loop will be created. In such case
we can use another method based on software/hard-
ware sorters from [12]. In the next section we will pre-
sent the results of experiments for such sorters.

For some practical applications only the maximum or
the minimum subsets need to be extracted. This task
can be solved by removing the networks SNmin (for find-
ing only the maximum subset) or SNmax (for finding only
the minimum subset).

5 Implementations, Experiments and
Comparisons

Fig. 12 shows the organization of experiments. We
have used a multi-level computing system [12]. Initial
(source) data are either generated randomly in soft-
ware of the PS with the aid of C language rand func-
tion (see number 1 in Fig. 12) or prepared in the host PC
(see number 2 in Fig. 12). In the last case data may be
generated by some functions or copied from available
benchmarks. Computing subsets in software/hardware
systems is done completely in Zynq APSoC xc7z020-
1clg484c housed on ZedBoard [32] with the aid of the
described above software/hardware architecture (see
Fig. 4). Computing subsets in software only sorters is
completely done in the PS calling C language qsort
function which sorts data and after that the maximum
and minimum subsets are extracted from the sorted
data. The results are verified in software running either

0

7

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Fe
ed

ba
ck

 re
gi

st
er

 (F
R)

8

15

9
10
11
12
13
14

K
M

-b
it

da
ta

 it
em

s

Load
FR
91
66
77
55
26
37
11
19
3
7
99
56
8
31
33
2

91
77
66
55
37
26
19
11
7
99
3
56
31
33
8
2

91
77
66
55
37
26
19
99
11
56
7
33
3
31
8
2

91
77
66
55
37
99
26
56
19
33
11
31
7
8
3
2

91
77
66
99
55
56
37
33
26
31
19
11
8
7
3
2

Itera�ve sor�ng network

91
99
77
66
56
55
37
33
31
26
19
11
8
7
3
2

99
91
77
66
56
55
37
33
31
26
19
11
8
7
3
2

1 2 3 4 5 6

itera�ons

N
o

sw
ap

pi
ng

 w
hi

ch
 in

di
ca

te
s

th
at

 a
ll

ite
m

s a
re

 so
rt

ed

Figure 11: An example of iterative sorting network
from [27] for K=16 data items

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

150

in the PS (see number 3 in Fig. 12) or in the host PC (see
number 4 in Fig. 12). Functions for verification of the re-
sults are given in [12]. Verification time is not taken into
account in the measurements below. Methods that are
used for copying files between the PC and APSoCs are
explained in [12] with examples.

Synthesis and implementation of hardware modules
were done in Xilinx Vivado 2014.2 design environment
from specifications in VHDL. Standalone software appli-
cations have been created in C language and uploaded
to the PS memory from Xilinx SDK (version 2014.2) us-
ing methods described in [12]. Interactions with APSoC
are done through the SDK console window.

Figure 12: Experimental setup

For all the experiments 64-bit AXI ACP port was used
for transferring blocks between the PL and memories.
More details about this port can be found in [12,23,33].
The size of each block for burst mode is chosen to be
128 of 64-bit items (two 32-bit items are sent/received
in one 64-bit word). Two memories were tested: the
OCM and external (on-board) DDR. The OCM is faster
because it provides 64-bit data transfers [1], but the
size of this memory is limited to 256 KB. The available
on ZedBoard 4 Gb DDR provides 32-bit data transfers.

The measurements were based on time units (returned
by the function XTime_GetTime [34]) for Lmax = Lmin =
64, M=32, and K = 200. Each unit returned by this func-
tion corresponds to 2 clock cycles of the PS [35]. The
PS clock frequency is 666 MHz. Thus, any unit corre-
sponds to approximately 3 ns. The PL clock frequency
was set to 100 MHz. Fig. 13 shows the time consumed
for computing the maximum and minimum subsets for
data sets with different sizes in KB (from 2 to 128). Since
M=32 the number of processed words (N) is equal to
the indicated size divided by 4. Fig. 14 shows the ac-
celeration of software/hardware systems comparing to
software only systems. Note that Figs. 13, 14 present
diagrams for OCM. If DDR memory is used then com-
munication overheads are slightly increased but accel-
eration in the software/hardware systems comparing

to software only system is again significant. For M=64
speed-up is increased in almost 2 times.

Figure 13: Computing time in software only and soft-
ware/hardware systems

Figure 14: Acceleration of software/hardware systems
comparing to software only system

If only the maximum or only the minimum subsets have
to be computed the acceleration is almost the same,
but the occupied hardware resources are reduced.

If the size of the requested subsets is increased in such
a way that all data need to be read from memory sever-
al times (see section 4) then acceleration is decreased.
Table 1 presents the results for extracting larger sub-
sets (containing from 127 to 505 32-bit data items)
from 128 KB set.

Host PC

Output files

Input files

Processing in
so�ware of
the host PC

So�ware,
developed

in SDK

Hardware,
developed
in VivadoIn

te
rf

ac
es

Genera�ng data
using C language

func�on rand

2

1

Ge�ng data
from the host PC

3 Verifying the results in
so�ware of the PS

4
Verifying the
results in the

host PC
Measuring the �me required in so�ware
only and in hardware/so�ware systems

Evalua�on of communica�on overheads

Genera�ng data and verifica�on of
the results

Zynq APSoC

PS PL

Displaying the results

1

10

100

1,000

10,000

100,000

2 4 8 16 32 64 128

So�ware only
Hardware (method 1)
Hardware (method 2)

Time in µs

Size of data in KB

The results for methods
1 and 2 are almost

iden�cal and that is why
the respec�ve lines

overlap

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128

Accelera�on of
so�ware/hardware
systems comparing to
so�ware only system

Accelera�on

Size of data in KB

Example: this point
indicates accelera�on
by a factor of 70.7 of

the proposed so�ware/
hardware solu�ons
comparing to the

so�ware only solu�on

70.7

Table 1: The results for extracting larger subsets from 128 KB set

N 127 190 253 316 379 442 505
Time in µs 926.4 1,393.7 1,856.7 2,320.5 2,780.4 3,245.5 3,708.9

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

151

For very large subsets acceleration may even be less
than 1, i.e. software only system becomes faster. In
such cases software/hardware sorters from [12] can be
used directly and they provide acceleration for all po-
tential cases even for Lmax = N or Lmin = N. Such accelera-
tion is not as high as in Fig. 14 and it is equal to 6 for
N = 512, K = 256 (now K is the size of blocks sorted in
hardware and further merged in software) and 1.4 for
N = 33,554,432, K = 256. These results were taken from
experiments with data sorters from [12] (in all experi-
ments M=32). We found that for small and moderate
subsets the proposed here methods provide signifi-
cantly better acceleration.

6 Conclusion

The paper suggests hardware/software architecture
for fast extraction of minimum and maximum sorted
subsets from large data sets and two methods of such
extractions based on highly parallel and easily scalable
sorting networks. The basic idea of the methods is incre-
mental construction of the subsets that is done concur-
rently with transfer of initial data (source sets) through
advanced high-performance interfaces in burst mode.
Thorough experiments were done with entirely imple-
mented on-chip designs in Zynq xc7z020-1clg484c de-
vice housed on ZedBoard. The size of initial sets varies
from 512 to more than 33 million of 32-bit words. The
results demonstrate significant speed-up comparing to
pure software implementations in the same Zynq de-
vice, namely performance was increased by 1-2 orders
of magnitude for small subsets and by a factor ranging
from 1.4 to 6 for very large subsets.

7 Acknowledgments

This research was supported by EU through European
Regional Development Funds, the institutional re-
search funding IUT 19-1 of the Estonian Ministry of Ed-
ucation and Research, ESF grant 9251, and Portuguese
National Funds through FCT - Foundation for Science
and Technology, in the context of the project PEst-OE/
EEI/UI0127/2014.

8 References

1. Xilinx, Inc. (2014). Zynq-7000 All Programma-
ble SoC Technical Reference Manual. http://
www.xilinx.com/support/documentation/user_
guides/ug585-Zynq-7000-TRM.pdf.

2. Crockett L.H., Elliot R.A., Enderwitz M.A., and
Stewart R.W. (2014). The Zynq Book. University of
Strathclyde.

3. Hao L. and Stitt G. (2012). Bandwidth-Sensitivity-
Aware Arbitration for FPGAs. IEEE Embedded Sys-
tems Letters, 4(3), 73-76.

4. Bailey D.G. (2011) Design for Embedded Image
Processing on FPGAs. John Wiley and Sons.

5. Sklyarov V., Skliarova I., Barkalov A., and Titarenko
L. (2014) Synthesis and Optimization of FPGA-
based Systems. Springer.

6. Cristo, A., Fisher, K., Gualtieri, A.J., Pérez, R.M., and
Martínez, P. (2013). Optimization of Processor-
to-Hardware Module Communications on Spa-
ceborne Hybrid FPGA-based Architectures. IEEE
Embedded Systems Letters, 5(4), 77-80.

7. Canedo, A., Ludwig, H., and Al Faruque, M.A.
(2014). High Communication Throughput and
Low Scan Cycle Time with Multi/Many-Core Pro-
grammable Logic Controllers. IEEE Embedded Sys-
tems Letters, 6(2), 21-24.

8. Santarini, M. (2013). All Eyes on Zynq SoC for
Smart Vision. XCell Journal, 83(2), 8-15.

9. Dick, C. (2013). Xilinx All Programmable Devices
Enable Smarter Wireless Networks. XCell Journal,
83(2), 16-23.

10. Xilinx, Inc. (2014) Vivado Design Suite Guides.
http://www.xilinx.com/support/index.html/con-
tent/xilinx/en/supportNav/design_tools.html.

11. Xilinx, Inc. (2014). Zynq-7000 All Programmable
SoC Software Developers Guide. UG821 (v9.0).
http://www.xilinx.com/support/documentation/
user_guides/ug821-zynq-7000-swdev.pdf.

12. Sklyarov, V., Skliarova, I., Silva, J., Rjabov, A., Sud-
nitson, A., and Cardoso, C. (2014) Hardware/Soft-
ware Co-design for Programmable Systems-on-
Chip. TUT Press.

13. Xilinx, Inc. (2013). Simple AMP Running Linux and
Bare-Metal System on Both Zynq SoC Processors.
http://www.xilinx.com/support/documentation/
application_notes/xapp1078-amp-linux-bare-
metal.pdf.

14. Sklyarov, V. and Skliarova, I. (2013). Digital Ham-
ming Weight and Distance Analyzers for Binary
Vectors and Matrices. International Journal of In-
novative Computing, Information and Control,
9(12), 4825-4849.

15. Zmaranda, D., Silaghi, H., Gabor, G., and Vancea,
C. (2013). Issues on Applying Knowledge-Based
Techniques in Real-Time Control Systems, Interna-
tional Journal of Computers, Communications and
Control, 8(1), 166-175.

16. Field, L., Barnie, T., Blundy, J., Brooker, R.A., Keir, D.,
Lewi, E., and Saunders, K. (2012) Integrated field,
satellite and petrological observations of the No-

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

152

vember 2010 eruption of Erta Ale. Bulletin of Vol-
canology, 74(10), 2251–2271.

17. Zhang, W., Thurow, K., and Stoll, R. (2014). A
Knowledge-based Telemonitoring Platform for
Application in Remote Healthcare. International
Journal of Computers, Communications and Con-
trol, 9(5), 644-654.

18. Verber, D. (2011), Hardware implementation of an
earliest deadline first task scheduling algorithm.
Informacije MIDEM, 41(4), 257-263.

19. Baker, Z.K. and Prasanna, V.K. (2006). An Archi-
tecture for Efficient Hardware Data Mining using
Reconfigurable Computing Systems. Proc. 14th
Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa, USA, 67-75.

20. Sun, S. (2011). Analysis and acceleration of data
mining algorithms on high performance recon-
figurable computing platforms. Ph.D. thesis, Iowa
State University. http://lib.dr.iastate.edu/cgi/
viewcontent.cgi?article=1421&context=etd.

21. Wu, X., Kumar, V., Quinlan, J.R., et al. (2014). Top 10
algorithms in data mining. Knowledge and Infor-
mation Systems, 14(1), 1-37.

22. Firdhous, M.F.M (2010). Automating Legal Re-
search through Data Mining. International Journal
of Advanced Computer Science and Applications,
1(6), 9-16.

23. Silva, J., Sklyarov, V., and Skliarova I. (2015) Com-
parison of On-chip Communications in Zynq-
7000 All Programmable Systems-on-Chip. IEEE
Embedded Systems Letters, 7(1), 31-34.

24. Neuendorffer, S., and Martinez-Vallina, F. (2013).
Building Zynq Accelerators with Vivado High Lev-
el Synthesis. Proc. ACM/SIGDA Int. Symp. on Field
Programmable Gate Arrays, Monterey, CA, USA,
1-2.

25. Xilinx, Inc. (2014). OS and Libraries Document
Collection UG647. http://www.xilinx.com/sup-
port/documentation/sw_manuals/xilinx2014_2/
oslib_rm.pdf.

26. Baddar, S.W.A.-H., and Batcher, K.E. (2011). Design-
ing Sorting Networks. A New Paradigm. Springer.

27. Sklyarov, V., and Skliarova, I. (2014). High-perfor-
mance implementation of regular and easily scal-
able sorting networks on an FPGA. Microproces-
sors and Microsystems, 38(5), 470-484.

28. Alekseev, V.E. (1969). Sorting Algorithms with
Minimum Memory. Kibernetica, 5, 99-103.

29. Knuth, D.E. (2011). The Art of Computer Program-
ming. Sorting and Searching, vol. III. Addison-
Wesley.

30. Xilinx, Inc. (2014). 7 Series FPGAs Overview.
http://www.xilinx.com/support/documentation/
data_sheets/ds180_7Series_Overview.pdf.

31. Mueller, R., Teubner, J., and Alonso, G. (2012) Sort-
ing networks on FPGAs. Int. J. Very Large Data Bas-
es, 21 (1), 1–23.

32. Avnet, Inc. (2014). ZedBoard (ZynqTM Evaluation
and Development) Hardware User’s Guide, Ver-
sion 2.2. http://www.zedboard.org/sites/default/
files/documentations/ZedBoard_HW_UG_v2_2.
pdf.

33. Sadri, M., Weis, C., When, N., and Benini, L. (2013).
Energy and Performance Exploration of Accelera-
tor Coherency Port Using Xilinx ZYNQ. Proceed-
ings of the 10th FPGAWorld Conference, Copenha-
gen/Stockholm.

34. Xilinx, Inc. (2013). LogiCORE IP AXI Master Burst
v2.0. Product Guide for Vivado Design Suite.
http://japan.xilinx.com/support/documenta-
tion/ip_documentation/axi_master_burst/v2_0/
pg162-axi-master-burst.pdf.

35. Xilinx, Inc. (2014). Standalone (v.4.1). UG647.
http://www.xilinx.com/support/documentation/
sw_manuals/xilinx2014_2/oslib_rm.pdf.

Arrived: 09. 11. 2014
Accepted: 14. 04. 2015

V. Sklyarov et al; Informacije Midem, Vol. 45, No. 2 (2015), 142 – 152

