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Abstract: The paper describes hardware/software architecture of a system for extracting the maximum and minimum sorted subsets 
from large data sets, two methods that enable high-level parallelism to be achieved, and implementation of the system in recently 
appeared on the market Zynq-7000 microchips incorporating a high-performance processing unit and advanced programmable logic 
from the Xilinx 7th family. The methods are based on highly parallel and easily scalable sorting networks and the proposed technique 
enabling sorted subsets to be extracted incrementally with very high speed that is close to the speed of data transfer through high-
performance interfaces. The results of implementations and experiments clearly demonstrate significant speed-up of the developed 
software/hardware system comparing to alternative software implementations. 
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Sistem na osnovi Zynq za izluščitev razvrščenih 
podsklopov iz obsežnih podatkovnih sklopov
Izvleček: Članek predstavlja programsko/strojno zasnovo sistema za izluščitev največjih in najmanjših razvrščenih podsklopov v 
obsežnih podatkovnih sklopih. Predstavljeni sta dve metodi, ki omogočata visoko stopnjo vzporednosti in implementacijo sistema v 
tržnem ZYNG-7000 mikročipu na osnovi programabilne logike Xilinx sedme generacije. Metode temeljijo na vzporedni in enostavno 
razširljivih omrežjih ter omogočajo izluščitev podsklopov s hitrostjo blizu hitrosti prenosa podatkov. Rezultati dokazujejo veliko 
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1 Introduction

All Programmable Systems-on-Chip (APSoC) from 
Zynq-7000 family [1,2] combine on the same microchip 
the dual-core ARM CortexTM MPCoreTM-based high-
performance processing system (PS) with advanced 
programmable logic (PL) from the Xilinx 7th family and 
may be used effectively for the design of hardware ac-
celerators in such areas as hard real-time systems [3], 
image [4] and data [5] processing, satellite on-board 
processing [6], programmable logic controllers [7], 
driver assistance applications [8], wireless networks [9], 
and many others [2]. Interactions between the PS and 
PL are supported by different interfaces and other sig-
nals through over 3,000 connections [1]. Available four 
32/64-bit high-performance (HP) Advanced eXtensible 
Interfaces (AXI) and a 64-bit AXI Accelerator Coherency 

Port (ACP) enable fast data exchange with theoretical 
bandwidths shown in [1]. 

Zynq APSoC design flow includes the development of 
hardware in the PL [10] (supported by available Xilinx 
IP cores) and software in the PS [11] for different types 
of applications such as standalone (bare metal) [12], 
running under an operating system (e.g. Linux) [12] and 
combined [13]. Hardware implemented in the PL can 
be the same for standalone and Linux applications but 
software programs use different functions and interac-
tion mechanisms [12]. Since bare metal projects are 
generally faster, we will consider them as a base which 
does not exclude using the results for projects running 
under operating systems. The latter may benefit from 
available drivers and other support [12]. Since both 
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types of projects can run in parallel in different cores 
[13] they may be combined if required.

Many electronic, environmental, medical, and biologi-
cal applications need to process data streams produced 
by sensors and measure external parameters within 
given upper and lower bounds (thresholds) [14]. Let us 
consider some examples. Applying the technique [15] 
in real-time applications requires knowledge acquisi-
tion obtained from controlled systems (e.g. plant). For 
example, signals from sensors may be filtered and ana-
lysed to prevent error conditions (see [15] for additional 
details). To provide more exact and reliable conclusion 
a combination of different values need to be extracted, 
ordered, and analysed. Similar tasks appear in monitor-
ing thermal radiation from volcanic products [16], fil-
tering and integration of information from a variety of 
different sources in medical applications [17] and so on. 
Since many systems are hard real-time, performance is 
important and hardware accelerators may provide sig-
nificant assistance for software products. Similar prob-
lems appear in so-called straight selection sorting (in 
such applications where we need to find a task with 
the shortest deadline in scheduling algorithms [18]), 
in statistical data manipulation and data mining (e.g. 
[19-22]). To describe one of the problems from data 
mining informally let us consider an example [19] with 
analogy to a shopping card. A basket is the set of items 
purchased at one time. A frequent item is an item that 
often occurs in a database. A frequent set of items of-
ten occur together in the same basket. A researcher can 
request a particular support value and find the items 
which occur together in a basket either a maximum 
or a minimum number of times within the database 
[19]. Similar problems appear to determine frequent 
inquiries at the Internet, customer transactions, credit 
card purchases, etc. requiring processing very large vol-
umes of data in the span of a day [19]. Fast extracting 
the most frequent or the less frequent items from large 
sets permits data mining algorithms to be simplified 
and accelerated. Sorting of subsets may be involved in 
many known methods from this area [e.g. 20-22].

Let us consider a system that collects data produced by 
some measurements or copies such data from a data-
base. A valuable assistance for applications described 
above may be provided by fast extraction of the maxi-
mum and minimum sorted subsets from the set of 
collected data, where the maximum/minimum sorted 
subset contains Lmax/Lmin data items. This problem can 
be solved in a software only system. For example, C 
function qsort permits large data sets to be sorted. Af-
ter sorting is completed, extracting the maximum and 
minimum subsets may easily be done collecting them 
from the top and from the bottom of the sorted set. 
However, for many practical applications, such as that 

are referenced in [18,19], performance of the described 
above operations is important and software functions 
need to be accelerated. The paper suggests methods 
and high-performance implementations for solving 
the indicated above problem in APSoC from the Xilinx 
Zynq-7000 family.

The remainder of the paper is organized in five sec-
tions. Section 2 presents the proposed system archi-
tecture and describes overall functionality. Section 3 
suggests two novel methods allowing the maximum 
and minimum sorted subsets to be extracted from 
large data sets. Section 4 shows how large subsets (for 
which hardware resources are not sufficient) can be 
computed and discusses additional capabilities. Imple-
mentation in Zynq microchip and the results of thor-
ough evaluation and comparison of software only and 
software/hardware solutions with explicit indication of 
the achievable accelerations are discussed in section 5. 
Section 6 concludes the paper.

2 System Architecture and Functionality

The known results [2,5,12] have shown that software/
hardware solutions may be significantly faster than 
software only solutions. Let us look at Fig. 1. Clearly, 
software/hardware system is faster if: Ts > Tsch ≤ Tsh + Th 
+ Tc, where Ts, Tsch, Tsh, Tc, Th are time intervals required for 
different modules. In highly parallel implementations 
software, hardware and interactions between hard-
ware and software can run concurrently. For example, 
software may run in parallel with hardware; operations 
in hardware over previously received data may be done 
at the same time when new data are being transferred. 
Thus, Tsch ≤ Tsh + Th + Tc. This paper evaluates and com-
pares software/hardware and software only solutions 
taking into account all the involved communication 
overheads and paying special attention to high level of 
parallelism. For instance we would like communication 
and application-specific operations to be overlapped 
in hardware as much as possible (see Fig. 1). Note that 
while hardware only designs may be the fastest, the 
complexity of such designs is often limited by the avail-
able resources in the PL.

Figure 1: Software only and software/hardware sys-
tems
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Fig. 2 presents the proposed software/hardware archi-
tecture. Extracting subsets is done in an application-
specific processing block (ASP) which is entirely imple-
mented in the PL. We will discuss the ASP in the next 
section with all necessary details. There is another block 
in the PL called communication-specific processing 
(CSP) which interacts with the PS, i.e. it receives a large 
set of data items step by step in blocks and transfers the 
extracted sorted subsets. Besides, CSP is responsible for 
exchange of control signals between the PS and PL.

The PS is responsible for solving the following tasks:
1. Acquiring data and saving them in either on-chip 

memory (OCM) or external memory that is DDR. 
2. Forming requests to extract subsets in the PL 

which is done through a set of control signals.
3. Collecting extracted subsets and storing them in 

OCM or external memory.
4. Verifying the results.
5. Solving exactly the same problem in software. This 

point is required just for experiments and comparison.
6. Computing the consumed time.

The PL is responsible for solving the following tasks:
1. Processing control signals received from the PS 

which are: a request (start) to begin data process-
ing; source address in memory of input data (i.e. 
the address of the set that has to be handled); desti-

nation address in memory of output data (i.e. the 
address to copy the extracted subsets); the number 
of blocks Q of input data transferred from the PS 
to PL; and the number of items in the last block Klast. 
The PL also forms two signals that are sent to the 
PS which are: an interrupt generated as soon as 
the job is completed (i.e. the subsets have been 
extracted and copied to memory) and the num-
ber of clock cycles consumed in the PL which is 
needed for experiments and comparisons.

2. Extracting subsets on requests from the PS in 
highly-parallel ASP.

3. Counting clock cycles consumed in the PL from re-
ceiving the request up to generating the interrupt. 

Figure 3: Address mapping from Vivado 2014.2 block design editor

Figure 2: The proposed software/hardware architecture
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Note that for experiments and comparisons some ad-
ditional signals for interactions between the PS and PL 
may be needed.

There are some generic parameters for which hardware 
in the PL is statically configured (see Fig. 2). They are: 
 K – the number of items that are handled in hard-

ware in each block (Klast ≤ K);
 M – the size of each data item;
 Lmax – the number of items in the maximum subset;
 Lmin – the number of items in the minimum subset.

Selection of proper AXI ports is very important. Experi-
ments in [23] have shown that for transferring a small 
number of data items (from 16 to 64 bytes) general-
purpose input/output ports (GPP) are always the best. 
In Zynq APSoC there are four available 32-bit GPP, two 
of which are masters and the other two are slaves from 
the side of the PS. They are optimized for access from 
the PL to the PS peripherals and from the PS to the PL 
registers/memories [24]. Since the latter feature is what 
we need, a master GPP was chosen for transferring con-
trol signals shown in Fig. 2. AXI ACP allows cache mem-
ory of application processing unit (APU) in the PS to be 
involved for data transfers and there exists an oppor-
tunity to provide either cacheable or non-cacheable 
data from/to the indicated above memories (i.e. OCM 
or DDR) [23]. Mapping of memories may be done in 
computer-aided design software (in our case in Xilinx 
Vivado block design editor according to addresses 
given in [1] and shown in Fig. 3, and in Xilinx Software 
Development Kit - SDK). Experiments in [12,23] have 
shown that for transferring large volumes of data items 
AXI ACP is very appropriate. Thus, this port was chosen 
to receive the source set from memory (OCM or DDR) 
in the PL and to copy extracted subsets from the PL to 
memory.

Fig. 4 gives more details about the chosen software/
hardware interactions where: solid arrows (→) indicate 
who is the master (the beginning) and who is the slave 
(the end); triple compound lines show control flow; 
and dashed lines indicate directions of data flow (i.e. 
one direction - → or both directions - ↔). Control (and 
possibly a small number of additional auxiliary) signals 
are transferred through GPP. An initial (source) set and 
extracted subsets are copied through AXI ACP. The used 
memory (OCM or DDR) is indicated by the respective 
mapping both in hardware (see Fig. 3) and in software, 
which in our case was described in C language, and the 
mapping is done like the following: 

Note that additional details about mapping with many 
examples can be found in [12].

The snoop controller [1] in Fig. 4 provides cacheable 
and non-cacheable access to memories (OCM or DDR) 
[1]. Cache area can be either disabled or enabled in 
software with the aid of function Xil_SetTlbAttributes 
[25]. In particular data received from/copied to memo-
ries may be pre-cached, i.e. they can be first saved into 
faster cache and then transferred with the main goal 
to increase performance of communications. Note that 
for standalone programs cache memory is entirely 
available. For programs running under an operating 
system (such as Linux) some area in cache memory 
may be used by programs of the operating system and 
the size of available cache memory is reduced. Many 
additional details can be found in [12].

Figure 4: Hardware/software interactions

Initial (source) data set and extracted subsets are ac-
commodated in memory as it is shown in Fig. 5. All nec-
essary details about particular locations and sizes are 
supplied from the PS to PL through GPP (see Fig. 2). 

To extract the maximum and/or minimum sorted sub-
sets the following sequence of operations is executed:
1. The PS prepares source data in memory, calcu-

lates the number of blocks Q = N/K (the value 
K is predefined), the number of items in the last 
block (which can be less than K), and indicates 
source and destination addresses. Here, N is the 
total number of data items that have to be pro-
cessed.

#define OCM_ADDRESS    0x00000000   // OCM address (see [1] for details) 
#define DDR_ADDRESS    0x16D84000  // DDR address (see [1] for details)
#define GPIO_BASE_IO_Control  0x40000000  // GPP address (see [1] for details)
#define HP_ADDRES   OCM_ADDRESS   // for this example OCM address is chosen
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2. The PS sets the start signal that is permanently 
tested in the PL.

3. As soon as the signal start is set, the PL transfers 
blocks of data in burst mode and saves them in a 
dedicated dual-port embedded block RAM (one 
port is assigned for transferring data from the PS 
to PL and another port for copying data from the 
block RAM to PL registers considered in the next 
section).

Figure 5: Accommodation of the initial data set and 
the extracted subsets in memory

4. As soon as the first block is completely transferred 
to the block RAM through the first port, it is cop-
ied through the second port to PL registers that 
are used as inputs of sorting networks for extract-
ing subsets in ASP. 

5. The maximum and minimum subsets are incre-
mentally constructed using methods from the 
next section and subsequent blocks of source 
data are transferred from memory to the block 
RAM in parallel.

6. The block RAM is organized as a circular buffer as 
it is shown in Fig. 6. If it becomes full data transfer 
is suspended until space for subsequent block is 
freed.

7. As soon as all Q blocks are processed the maxi-
mum and minimum subsets are ready (the details 
will be given in the next section).

8. The maximum and minimum subsets are copied 
from the PL to memory (see Fig. 5).

9. As soon as the previous point is completed, the 
PL generates a hardware interrupt to the PS in-
dicating that the job has been finished (the de-
tails about such interrupts with examples can be 
found in [12]).

10. Optionally, the PL may count the number of clock 
cycles for solving the problem in hardware that it 
supplied to the PS through GPP.

11. PS may solve other problems in parallel with the 
PL. However, as soon as the interrupt is gener-
ated it is handled by the PS. Hence, the extracted 
subsets may immediately be used, for example, 
as data needed for projects of higher hierarchical 
levels. 

Figure 6: Block RAM organized as a circular buffer

The circular buffer in Fig. 6 is managed by the PL control 
unit (see Fig. 4) that is a finite state machine. The buffer 
is built in the PL block RAM which is written through 
the first port (used for transfer data from the PS) and 
read through the second port (used to copy data from 
the block RAM to PL registers). As soon as the buffer 
is full, data transfer from the PS to PL is suspended. As 
soon as some area of the buffer is released (because 
data have already been read) data transfer is renewed.

3 Methods for Extracting Sorted Subsets

Let set S containing N M-bit data items be given. The 
maximum subset contains Lmax largest items in S and 
the minimum subset contains Lmin smallest items in S 
(Lmax ≤ N and Lmin ≤ N). We mainly consider such tasks 
for which Lmax << N and Lmin << N which are more com-
mon for practical applications. Large and very large 
subsets may also be extracted and section 4 explains 
how to compute them. Experiments with such subsets 
are also reported in section 5. Sorting will be done in 
highly parallel networks, such as [26] or [27]. Since N 
may have very large value (millions of items) it cannot 
completely be processed in hardware due to unavail-
ability of sufficient resources.
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We suggest solving the problem iteratively using hard-
ware architecture of ASP shown in Fig. 7. Data are incre-
mentally received in blocks containing exactly K items 
and then processed by parallel networks described 
below. We mentioned above that the last block may 
contain less than K items. If so, it will be extended up 
to K items (we will talk about such extension a bit lat-
er). Part of sorted items with maximum values will be 
used to form the maximum subset and part of sorted 
items with minimum values will be used to form the 
minimum subset. As soon as all Q blocks have been 
handled the maximum and/or minimum subsets will 
be ready to be transferred to the PS. 

We suggest two methods enabling the maximum and 
minimum sorted subsets to be incrementally con-
structed. The first method is illustrated in Fig. 8. 

Figure 7: Basic hardware architecture for ASP

Figure 8: The first method of extracting the maximum 
and minimum sorted subsets

Sorting networks SNmin and SNmax have input registers. 
The minimum and maximum sorted subsets will be 
built incrementally in halves of registers indicated at 
the bottom part of Fig. 8. At initialization step, these 
parts are pre-loaded with possible maximum and mini-
mum values which data from the source set may have. 
Such values can be indicated by the PS in additional 
fields through GPP or calculated in the PL. Then the fol-
lowing steps are executed:
1. The first block containing K M-bit data items is 

copied from block RAM and becomes available at 
the inputs of the main SN.

2. The block is sorted in parallel in the main SN 
which can be done in combinational networks 
from [26] (such as even-odd merger) or in se-
quential iterative networks from [27] (such as it-
erative even-odd transition network). In the last 
case additional control is provided.

3. Lmax sorted items with maximum values are loaded 
in a half of the SNmax input register as it is shown in 
Fig. 8. Lmin sorted items with minimum values are 
loaded in a half of the SNmin input register as it is 
shown in Fig. 8. All the items are resorted by the 
relevant sorting networks SNmax and SNmin.

4. A new block is copied from block RAM and be-
comes available at the inputs of the main SN. 
Such operations are repeated until all Q-1 blocks 
are handled.

5. The last block may contain less than K items and 
it is processed slightly differently. As soon as all 
Q blocks have been transferred from the PS to 
the PL block RAM and Q-1 blocks have been han-
dled in ASP, the last block (if it is incomplete) is 
extended to K items by copying the largest item 
from the created minimum sorted subset. Thus, 
the last block becomes complete. Clearly, largest 
item from the created minimum sorted subset 
cannot be moved again to the minimum subset 
and the last block is handled similarly to the pre-
vious blocks.

Let as look at an example in Fig. 9.

Figure 9: Example of extracting sorted subsets using 
the first method
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It is assumed that the minimum possible value of data 
items is 0 and the maximum possible value is 99 (clear-
ly, other values may also be chosen). At the first step 
(a), shown in left-hand part of Fig. 9, input registers for 
SNmax and SNmin are initialized, and the first block of data 
becomes available for the main SN. U indicates unde-
fined values. At the next step (b) input registers are up-
dated as it is shown by dashed fragments in Fig. 9. At 
step (c) a new block of data becomes available. Note 
that loading the register for the main SN can be done 
in parallel with copying Lmax/Lmin to SNmax/SNmin. Items 
in SNmax and SNmin are sorted as soon as the relevant in-
put registers are updated. After executing steps (a) - (g) 
the maximum and minimum sorted subsets are ready 
(see the right-hand part of Fig. 9) for the items shown 
in grey in the main SN. Clearly, this method enables the 
maximum and minimum sorted subsets to be incre-
mentally constructed for very large sets.

The idea of the second method is illustrated in Fig. 10 
on the same example from Fig. 9.

Figure 10: Example of extracting sorted subsets using 
the second method

Now the size of the networks SNmax and SNmin was re-
duced twice (there are now just 4 M-bit inputs instead 
of 8 in Fig. 9). Much like Fig. 8 both these networks have 
input registers (4 M-bit registers for our example). At 
initialization step SNmax and SNmin are filled in with the 
minimum and maximum values which are assumed as 
before to be 0 and 99. There are two additional frag-
ments in Fig. 10 which contain circuits from [28]. They 
are composed of comparators shown in Knuth notation 
[29]. Any comparator converts a two-item input to the 
two-item output in such a way that the upper value is 
greater than or equal to the lower value. Let us call cir-
cuits from [28] a swapping network. If they are applied 
to two sorted subsets with equal sizes then it is guar-
anteed that the upper half outputs of the network con-

tain the largest values from two sorted subsets and the 
lower half outputs of the network contain the smallest 
values from two sorted subsets. If we resort separately 
the upper and the lower parts then two sorted subsets 
will form a single sorted set. Let us analyse the upper 
swapping network in Fig. 10. At step (a) inputs of the 
network are sorted subsets {0,0,0,0} and {99,92,71,70}. 
Thus, two new subsets {70,71,92,99} and {0,0,0,0} are 
created. Sorting them enables the maximum sorted 
subset {99,92,71,70} with four items to be found on 
outputs of SNmax. At step (c) inputs of the swapping net-
work are sorted subsets {99,92,71,70} and {98,80,71,69} 
and two new subsets {99,92,80,98} and {70,71,71,69} 
are created. Sorting them enables the maximum sort-
ed subset {99,98,92,80} to be built. At step (e) inputs of 
the swapping network are sorted subsets {99,98,92,80} 
and {20,19,18,17} and no swapping is done. Hence, the 
maximum sorted subset is {99,98,92,80} and it is the 
same as in Fig. 9. The lower swapping network in Fig. 
10 functions similarly. 

The second method involves an additional delay on 
the comparators of swapping networks but eliminates 
copying (through feedbacks in Fig. 8) from the main SN 
to SNmax and SNmin. Besides, the sizes of SNmax and SNmin 
are reduced twice.

Let us discuss now an attainable complexity of sorting 
networks in the PL. It is shown in [5,27] that even in rela-
tively complex field-programmable gate arrays (FPGAs) 
the size K is limited. For example, for even-odd merge 
and bitonic merge networks [26] K cannot exceed a 
few hundreds of 32-bit items even for very advanced 
FPGAs (such as the largest devices from the Xilinx Vir-
tex-7 family [30]). In Zynq devices and circuits from [31] 
the maximum value of K cannot exceed 100 of 32-bit 
items. Iterative even-odd transition networks from [27] 
permit significantly larger number of items (exceeding 
thousands of 32-bit items) to be processed and they 
may efficiently be used for computing sorted subsets 
in hardware. Fig. 11 gives an example of the network 
from [27] which permits up to K = 16 data items to be 
sorted.

K M-bit data items that have to be sorted are loaded 
(from block RAM) to the feedback register (FR). Sort-
ing is executed in a segment of even-odd transition 
network composed of two linked lines with even and 
odd comparators. Sorting is completed in K/2 itera-
tions (clock cycles) at most. Note, that almost always 
the number of iterations is less than K/2 because of the 
technique [27] according to which if there is no swaps 
of data on the right-most line of the comparators then 
sorting is completed. Note that the network [27] pos-
sesses significantly smaller combinational delays than 
networks from [26]. Besides, in the proposed architec-
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ture (see Fig. 4) iterations are done at the same time as 
subsequent data are being received from the PS. Such 
parallelism enables delays to be optimally adjusted al-
lowing the total performance to be improved.

4 Computing Large Subsets and 
Additional Capabilities

For some practical applications the maximum and 
minimum subsets may be large and the available 
hardware resources become insufficient to implement 
sorting networks. Indeed, in accordance with [12] the 
largest sorting network that can be implemented in 
Zynq microchip xc7z020-1clg484c (that will further be 
used for experiments) is 512 32-bit items. The arising 
problem can be solved using the following technique. 
Let lmax and lmin be constraints for the upper (SNmax) and 
bottom (SNmin) parts in Fig. 7, i.e. the circuits SNmax and 
SNmin with larger values (than lmax and lmin) cannot be 
implemented due to the lack of hardware resources or 
because of some other reasons. Let the parameters for 
the maximum and minimum subsets be greater than 
lmax and lmin, i.e. Lmax > lmax and Lmin > lmin. In such case 
the maximum and minimum subsets can be computed 
iteratively as follows:
1. At the first iteration, the maximum subset con-

taining lmax items and the minimum subset con-
taining lmin items are computed. The subsets are 
transferred to the PS (to memories). The PS re-
moves the minimum value from the maximum 
subset and the maximum value from the mini-
mum subset. Such correction avoids loss of re-
peated items at subsequent steps. Indeed, the 
minimum value from the maximum subset (the 
maximum value from the minimum subset) can 
appear for subsets to be subsequently construct-
ed in point 3 below and they will be lost because 
of filtering (see point 3).

2. The minimum value from the corrected in the PS 
maximum subset is assigned to Bu. The maximum 
value from the corrected in the PS minimum sub-
set is assigned to Bl. The values Bu and Bl are sup-
plied to the PL through GPP.

3. The same data items (from memory), as in point 
1 above, are preliminary filtered in the PL in such 
a way that only items that are less or equal than 
Bu and greater or equal than Bl are allowed to be 
transferred to block RAM, i.e. computing sorted 
subsets is done only for the filtered data items. 
Thus, the second part of the maximum and the 
minimum subsets will be computed and append-
ed (in the PS) to the previously computed subsets 
(such as subsets from point 1).

4. The points 2 and 3 above are repeated until the 
maximum subset with Lmax items and the mini-
mum subset with Lmin items are computed.

Note, that if the number of repeated items is greater 
than or equal to lmax/lmin, then the method above may 
generate infinite loops. This situation can easily be rec-
ognized. Indeed, if any new subset (that is sent from 
the PL to the PS) contains the same value repeated K 
times then an infinite loop will be created. In such case 
we can use another method based on software/hard-
ware sorters from [12]. In the next section we will pre-
sent the results of experiments for such sorters.

For some practical applications only the maximum or 
the minimum subsets need to be extracted. This task 
can be solved by removing the networks SNmin (for find-
ing only the maximum subset) or SNmax (for finding only 
the minimum subset). 

5 Implementations, Experiments and 
Comparisons

Fig. 12 shows the organization of experiments. We 
have used a multi-level computing system [12]. Initial 
(source) data are either generated randomly in soft-
ware of the PS with the aid of C language rand func-
tion (see number 1 in Fig. 12) or prepared in the host PC 
(see number 2 in Fig. 12). In the last case data may be 
generated by some functions or copied from available 
benchmarks. Computing subsets in software/hardware 
systems is done completely in Zynq APSoC xc7z020-
1clg484c housed on ZedBoard [32] with the aid of the 
described above software/hardware architecture (see 
Fig. 4). Computing subsets in software only sorters is 
completely done in the PS calling C language qsort 
function which sorts data and after that the maximum 
and minimum subsets are extracted from the sorted 
data. The results are verified in software running either 
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Figure 11: An example of iterative sorting network 
from [27] for K=16 data items
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in the PS (see number 3 in Fig. 12) or in the host PC (see 
number 4 in Fig. 12). Functions for verification of the re-
sults are given in [12]. Verification time is not taken into 
account in the measurements below. Methods that are 
used for copying files between the PC and APSoCs are 
explained in [12] with examples.

Synthesis and implementation of hardware modules 
were done in Xilinx Vivado 2014.2 design environment 
from specifications in VHDL. Standalone software appli-
cations have been created in C language and uploaded 
to the PS memory from Xilinx SDK (version 2014.2) us-
ing methods described in [12]. Interactions with APSoC 
are done through the SDK console window. 

Figure 12: Experimental setup

For all the experiments 64-bit AXI ACP port was used 
for transferring blocks between the PL and memories. 
More details about this port can be found in [12,23,33]. 
The size of each block for burst mode is chosen to be 
128 of 64-bit items (two 32-bit items are sent/received 
in one 64-bit word). Two memories were tested: the 
OCM and external (on-board) DDR. The OCM is faster 
because it provides 64-bit data transfers [1], but the 
size of this memory is limited to 256 KB. The available 
on ZedBoard 4 Gb DDR provides 32-bit data transfers.

The measurements were based on time units (returned 
by the function XTime_GetTime [34]) for Lmax = Lmin = 
64, M=32, and K = 200. Each unit returned by this func-
tion corresponds to 2 clock cycles of the PS [35]. The 
PS clock frequency is 666 MHz. Thus, any unit corre-
sponds to approximately 3 ns. The PL clock frequency 
was set to 100 MHz. Fig. 13 shows the time consumed 
for computing the maximum and minimum subsets for 
data sets with different sizes in KB (from 2 to 128). Since 
M=32 the number of processed words (N) is equal to 
the indicated size divided by 4. Fig. 14 shows the ac-
celeration of software/hardware systems comparing to 
software only systems. Note that Figs. 13, 14 present 
diagrams for OCM. If DDR memory is used then com-
munication overheads are slightly increased but accel-
eration in the software/hardware systems comparing 

to software only system is again significant. For M=64 
speed-up is increased in almost 2 times. 

Figure 13: Computing time in software only and soft-
ware/hardware systems

Figure 14: Acceleration of software/hardware systems 
comparing to software only system

If only the maximum or only the minimum subsets have 
to be computed the acceleration is almost the same, 
but the occupied hardware resources are reduced.

If the size of the requested subsets is increased in such 
a way that all data need to be read from memory sever-
al times (see section 4) then acceleration is decreased. 
Table 1 presents the results for extracting larger sub-
sets (containing from 127 to 505 32-bit data items) 
from 128 KB set.
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Table 1: The results for extracting larger subsets from 128 KB set

N 127 190 253 316 379 442 505
Time in µs 926.4 1,393.7 1,856.7 2,320.5 2,780.4 3,245.5 3,708.9
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For very large subsets acceleration may even be less 
than 1, i.e. software only system becomes faster. In 
such cases software/hardware sorters from [12] can be 
used directly and they provide acceleration for all po-
tential cases even for Lmax = N or Lmin = N. Such accelera-
tion is not as high as in Fig. 14 and it is equal to 6 for 
N = 512, K = 256 (now K is the size of blocks sorted in 
hardware and further merged in software) and 1.4 for 
N = 33,554,432, K = 256. These results were taken from 
experiments with data sorters from [12] (in all experi-
ments M=32). We found that for small and moderate 
subsets the proposed here methods provide signifi-
cantly better acceleration. 

6 Conclusion

The paper suggests hardware/software architecture 
for fast extraction of minimum and maximum sorted 
subsets from large data sets and two methods of such 
extractions based on highly parallel and easily scalable 
sorting networks. The basic idea of the methods is incre-
mental construction of the subsets that is done concur-
rently with transfer of initial data (source sets) through 
advanced high-performance interfaces in burst mode. 
Thorough experiments were done with entirely imple-
mented on-chip designs in Zynq xc7z020-1clg484c de-
vice housed on ZedBoard. The size of initial sets varies 
from 512 to more than 33 million of 32-bit words. The 
results demonstrate significant speed-up comparing to 
pure software implementations in the same Zynq de-
vice, namely performance was increased by 1-2 orders 
of magnitude for small subsets and by a factor ranging 
from 1.4 to 6 for very large subsets.
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