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Abstract: Cascaded Multi-Level Inverters (CMLI) are used in a wide range of high-power industrial drives and for integrating solar 
PV system. Asymmetric Cascaded Multilevel Inverter (ACMLI) produces an output voltage with reduced Total Harmonic Distortion 
(THD) when compared to Symmetric Cascaded Multilevel Inverter (SCMLI). ACMLI comprises of more semiconductor devices and 
thus reliability is a major concern. Efficient, high speed and precise fault detection is required for ACMLI to reduce failure rates and 
avoid unplanned shutdown. RMS voltage, mean voltage and THD under various single and double switch fault conditions are used 
as features for fault diagnosis. Fault diagnosis method for ACMLI based on probabilistic principal component analysis (PPCA) and 
Ensemble Machine Learning (EML) is presented. PPCA is used to optimize data and reduce the size of fault features. Finally, an EML 
classifier combining Support Vector Machine (SVM), K-Nearest Neighborhood (KNN) and Decision Tree (DT) is employed to diagnose 
the various open circuit faults. The proposed fault diagnosis method is validated using an experimental setup. The simulation and 
experimental result shows that EML technique diagnosis the fault with 99.32% accuracy.

Keywords: Multilevel Inverter; fault; Principal Component Analysis (PCA); SVM; Ensemble Machine Learning 

Diagnostika napak asimetričnega kaskadnega 
večnivojskega pretvornika z uporabo skupinskega 
strojnega učenja
Izvleček: Kaskadni večnivojski pretvorniki (CMLI) se uporabljajo v številnih visokozmogljivih industrijskih pogonih in za integracijo 
fotonapetostnega sistema. Asimetrični kaskadni večnivojski pretvornik (ACMLI) proizvaja izhodno napetost z manjšim skupnim 
harmonskim popačenjem (THD) v primerjavi s simetričnim kaskadnim večnivojskim pretvornikom (SCMLI). ACMLI vsebuje več 
polprevodniških naprav. Za ACMLI je potrebno učinkovito, hitro in natančno odkrivanje napak, da se zmanjša število okvar in prepreči 
nenačrtovana zaustavitev. Napetost RMS, srednja napetost in THD pri različnih okvarah z enim in dvema stikaloma se uporabljajo 
kot značilnosti za diagnosticiranje okvar. Predstavljena je metoda diagnosticiranja napak za ACMLI, ki temelji na verjetnostni analizi 
glavnih komponent (PPCA) in skupinskem strojnem učenju (EML). PPCA se uporablja za optimizacijo podatkov in zmanjšanje velikosti 
značilnosti napak. Za diagnosticiranje različnih napak odprtega tokokroga je uporabljen klasifikator EML, ki združuje podporni 
vektorski stroj (SVM), K-najbližje sosedstvo (KNN) in odločitveno drevo (DT). Predlagana metoda za diagnosticiranje napak je potrjena 
z eksperimentalno postavitvijo. Simulacija in eksperimentalni rezultati kažejo, da tehnika EML diagnosticira okvare z 99,32-odstotno 
natančnostjo.

Ključne besede: večnivojski pretvornik; napaka; analiza glavnih komponent (PCA); SVM; skupinsko strojno učenje
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1 Introduction

CMLI is one of the most prominent converter topolo-
gies for renewable energy-based distribution system 
and high-power industrial drive applications because 
of its excellent scalability, low harmonic distortions, 
modular topology, and high efficiency [1]. As the num-
ber of voltage steps at output terminals increases, 
harmonic distortion reduces. However, this inherently 
leads to an increase in the number of power semicon-
ductor devices [2]. ACMLI topology in natural sequence 
ratio (1:2:3) provides a higher number of voltage lev-
els with the symmetrical arrangement of power semi-
conductor switching devices. Reduced number of dc 
sources, high-speed capabilities, minimal switching 
loss, and high conversion efficiency are the prominent 
advantages of the ACMLI topology. The circuit topolo-
gy becomes more complicated when the number of H-
bridge cells grows exponentially, and thus the possibil-
ity of a power semiconductor device failure increases, 
resulting in abnormal working circumstances [3].

Short Circuit Fault (SCF) and Open Circuit Fault (OCF) in 
semiconductor devices are the general types of faults 
in power devices and account for 38% of errors. Short 
circuit faults happen in short duration and are extreme-
ly destructive, which causes serious impacts. SCF’s are 
transformed into OCF by a fast-acting fuse. OCF de-
grades inverter performance, distorts the output cur-
rents, and causes considerable risk of secondary faults 
in the load, grid, and converter systems. While applying 
CMLI to PV systems, if CMLI faults remain unidentified 
on time, it adversely impacts reliability, and even trig-
gers fires. Hence, it becomes essential to design and 
develop intelligent fault diagnosis system to provide 
reliable operation of ACMLI systems [4-8].

Fault diagnostic approaches are based on current 
and voltage-based methods. Current based method 
detects OC faults through the phase current, and cur-
rent residual [9]. The voltage-based fault diagnosis ap-
proach locates the fault by combining the output volt-
age and the diagnosis model. Line voltage error-based 
method is proposed for open circuit faults; however, it 
requires higher sampling time. The open switch faults 
are detected using a Fourier series and a histogram of 
the trajectory of voltage [10]. 

The data-driven fault detection method extracts volt-
age signals and applies signal processing methods and 
classification algorithms. This method provides attrac-
tive solutions due to the progress in Machine Learning 
(ML) algorithms and computation capability [11-12]. 
Fast Fourier Transform (FFT) with a hidden Markov 
model provides slower response in defect detection 
due to the sophisticated matrix operations [13]. 

The defect diagnostic approach for a three-level invert-
er utilizing a Back Propagation Neural network (BPN) 
and genetic algorithm is presented [14]. FFT analysis 
is employed to extract fault information, relative PCA 
and support vector machine (SVM) are employed to di-
agnose OCFs for SCMLI [15].  PCA and Multiclass-Rele-
vance Vector Machine (MRVM) are applied to lower the 
facet of the OCF in symmetric CMLI [16]. 

The approach incorporates the grey wolf algorithm linked 
with enhanced SVM technology. The methodology uses 
the grey wolf algorithm to optimize the SVM parameters 
[17]. SVM and KNN with PPCA are used to detect the OCF 
under different fault circumstances in a CMLI. The SVM 
based fault analysis technique is effective and presents 
97.6% accuracy with 70% training dataset [18]. 

Sparse representation with deep convolutional neural 
networks (DCNNs) is applied to provide an intelligent 
fault detection method for CMLI. By harnessing the 
beneficial characteristics of both approaches, the tech-
nique aims to improve defect identification efficiency 
and accuracy [19].

Different ML techniques, like KNN, SVM and Naive 
Bayesian classifier are applied. THD, RMS and mean 
voltage, and harmonics up-to 12th order are considered 
as characteristic features. The classification accuracy 
achieved using CMLI is 95.56%, and that of Packed U-
cell (PUC) inverters is 94.28% [20]. Affine-Invariant Rie-
mannian Metric Autoencoder Random Forest (AIRMAR) 
is proposed to recognize OCF in MLI [21].

To enhance the features for classification, this model 
employs a short-time Fourier transform (STFT), that 
generates a time-frequency image. Multiscale Kernel 
Convolution Neural Network (MKCNN) is employed 
that utilizes the benefits of 2D images to capture the 
spatial relations among diverse features. MKCNN is 
compared with the Back Propagation Neural Network 
(BPN) and CNN [22]. 

The shift in pole voltage when a fault occurs is investi-
gated and Rolling average of pole voltage is extracted. 
Pole voltage categories and reference voltage are the 
input characteristics for a decision tree classifier to 
identify single and double switch OCF [23].

An Adaptive Hilbert-Huang filter using Scale-Invariant 
Feature Transform (SIFT) with a Convolution Neural 
Network (CNN) classifier is employed [24].  Artificial 
neural network (ANN) is used to detect and diagnose 
faults in both binary and trinary configurations in an 
ACMLI [25]. Most of the literature has addressed fault 
diagnosis in SCMLI topology, and only very few have 
focused on fault diagnosis in ACMLI topology. 
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The following are the primary contributions of the pa-
per: (i) Developing an ML based fault diagnosis tech-
nique with greater classification accuracy that detects 
both single and double switch fault scenarios (ii). The 
proposed technique can be extended for fault diag-
nosis of any CMLI configuration (iii) Simulation of the 
ACMLI has been performed in both normal and faulty 
conditions. (iv) Experimental implementation of the 
proposed technique is validated for single and double 
switch fault classification in ACMLI.

2 Fault diagnosis system

Figure 1: Structure of fault diagnosis system

Fig. 1 depicts the structure of a fault diagnosis system. 
The following four major states build up the system: 1) 
Feature extraction and dimension reduction; 2) Neural 
Network based fault classification; 3) Fault diagnosis; 4) 
Switching pattern reconfiguration. The voltage input 
signal transformation is performed to extract essen-
tial characteristics, and the output is directed to neu-
ral network classification. The network is trained with 
normal scenario and fault scenario, and each matching 
output is assigned a binary label.

FFT is a digital signal processing microchip implemen-
tation approach. FFT approach has a strong identity 
feature that allows it to distinguish between normal 
and irregular fault signals. The precisely assembled 
information in fig. 2. lays the foundation for develop-
ing a reliable fault identification and diagnosis system. 

The features used for fault classification are: FFT, RMS 
voltage (Vrms), mean voltage (Vmean), THD and har-
monics (up-to 19th order). These values are obtained 
under normal, single switch fault, double switch fault 
conditions.  Mean voltage indicates a shift and change 
in symmetrical pattern during faulty condition. RMS 
voltage provides information on the reduction in peak 
value due to fault. THD and lower order dominant har-
monics (up-to 19th) are considered as they reveal the 
distortion in waveform shape.

Figure 2: Flow chart of fault diagnosis system

3 ACMLI

The single-phase thirteen-level ACMLI is shown in Fig. 
3. The ACMLI has three H-Bridge modules and 12 power 
switching semiconductors, and three dc voltage sourc-
es supplied with values of Vdc: 2Vdc: 3Vdc. Vdc of 50V, 
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100V, and 150V are provided to produce a peak voltage 
of 300V. Each MOSFET switch is identified based on the 
bridge location (A, B, or C), as SA1, SA2, SB1, SB2, and 
so on. In natural sequence ACMLI, N-1 number of MOS-
FET’s are required for an L-level, and thus thirteen-level 
inverter requires 12 MOSFETs. The output voltage pro-
gresses in the levels of 1Vdc, 2Vdc, 3Vdc, 4Vdc... 13 Vdc. 
The switching sequence of ACMLI is presented in Table 
I. ACMLI is more susceptible to switch malfunctions as 
it has more semiconductor switches.

Figure 3: Circuit diagram of ACMLI

Table 1: Switching sequence of ACMLI.

0 Vdc -Vdc
0 1 2 3 4 5 6 1 2 3 4 5 6

SA1 1 1 1 1 1 1 1 0 0 0 0 0 0
SA2 0 1 0 1 0 1 1 0 1 1 0 1 0
SA3 1 0                1 0 1 0 0 1 0 0 1 0 1
SA4 0 0 0 0 0 0 0 1 1 1 1 1 1
SB1 1 1 1 1 1 1 1 0 0 0 0 0 0
SB2 0 0 1 0 0 1 1 1 0 1 1 0 0
SB3 1 1 0 1 1 0 0 0 1 0 0 1 1
SB4 0 0 0 0 0 0 0 1 1 1 1 1 1
SC1 1 1 1 1 1 1 1 0 0 0 0 0 0
SC2 0 0 0 1 1 1 1 1 1 0 0 0 0
SC3 1 1 1 0 0 0 0 0 0 1 1 1 1
SC4 0 0 0 0 0 0 0 1 1 1 1 1 1

Figure 4: Output and individual H-Bridge voltage 
waveform during fault conditions in ACMLI: (a) Normal 
condition (b) Single switch fault (c) Two switch fault in 
same H-Bridge cell (d) Two switch fault in different H-
Bridge cell

(a)

(b)

(c)

(d)
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4 Fault in ACMLI

Simple fault in ACMLI is single MOSFET malfunction-
ing at an instant of time, and intricate fault is two or 
more MOSFET malfunctioning concurrently. This paper 
deals  with  simple  as well as intricate  fault diagnosis. 
The most difficult aspect of fault detection is obtaining 
additional information to distinguish between compa-
rable defects in distinct switches.

Twelve single switch faults, sixty-three double switch 
faults, and three input source faults are examined for 
validating the proposed method as shown in Table 2. 

Fig .4(a) illustrates the output waveform of the ACMLI 
without any flaws, and distinct waveforms obtained 
in each H-Bridge cell. In the positive cycle, conduction 
takes place through switches Sn1 and Sn2 whereas in 
negative cycle, conduction takes place through Sn3 
and Sn4 with n generalized as n=a, b, c.

Case (i) Single switch fault: The fault is located in switch 
SC2, thus voltage in the positive cycle of H-Bridge cell 
3 is zero as shown in fig.4(b). This fault does not per-
mit the source Vdc3 to pervade through it. Hence in H-
bridge cell 3, level 3Vdc is lost which causes variation of 
voltage profile in positive cycle whereas the negative 
cycle remains unaffected. 

Case (ii) Two switch faults in same H-Bridge cell: The 
fault is located in switches SB2 and SB3 in the same H-
Bridge cell 2, thus it affects the flow of current in both 
positive and negative cycle. As observed in fig. 4(c), 
this scenario does not allow both half cycles and yields 
symmetrical variation of output voltage profile in both 
the cycles.

Case (iii) Two switch faults in different H-Bridge cells:  
The fault is located in switches of different H-Bridge 
cells, namely switches SA3 and SB2. This event triggers 
an asymmetrical variation in output voltage profile as 
shown in fig. 4(d). The condition (SA3 fault) does not 
permit voltage Vdc1 to pass through in negative cycle 
and voltage (SB2 fault) does not permit Vdc2 in positive 
half cycle. 

Table 2: Switching sequence of ACMLI

Type of faults Labels
Healthy 1
single switch fault 2 to 13
Double switch fault 14 to 76
Input source fault 77 to 79
Total Number of samples 1183

The fault case scenarios are labelled as follows: Healthy 
(1), single switch fault (2 to 13), and double switch fault 
(14 to 76), and input source fault (77 to 79) as shown in 
Table 2. The values are decoded into binary form and 
provided as the label for fault classification. Thus, a to-
tal of 1183 samples are provided with 948 for training 
and 235 for testing data set. 

RMS voltage, mean voltage, lower order harmonics and 
THD are recorded which serve as data set for various 
single and double OCF fault conditions. From fig.5(a) 
and fig.5(b) it is observed that certain faults result in 
similar values of RMS voltage and THD. Thus, it is nec-

Figure 5: RMS voltage and THD for various Fault switch 
condition (FSC): (a) RMS voltage (b) THD (%) (c) mean 
voltage.
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a) SA2                  b) SA3              c) SB2

d) SB3                  e) SC1             f ) SC2

g) SB2 and SB3                 h) SC1 and SC4            i) SC3 and SC2

j) SC1 and SC3                 k) SB1 and SB3            l)SB3 and SC4

m) SA3 and SB2                n) SB1 and SC1            o) SA1 and SA2

p) input source fault 1                q) input source fault2           r) input source fault3

Figure 6: Simulation results of output voltage under various fault switch condition
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essary to consider the mean voltage shown in fig.5(c), 
which shows variation in polarity and amplitude under 
fault conditions. The mean voltage serves as a rich indi-
cator of type and location of faults. 

Simulation results of output voltage waveform for vari-
ous types of single OCF are presented in fig.6(a) to (f ), 
double switch OCF is given in fig.6(g) to (o), and in-
put source fault is shown in fig. 6(p) to (r). Both even 
and odd harmonics are considered as the waveform is 
asymmetrical in most fault cases.

As observed in fig 6(c) and 6(d), the voltage waveforms 
during SB3 switch fault and SB2 switch fault are com-
plement to each other with similar value of RMS voltage 
and THD. SB2 switch failure shown in fig. 6(c) causes a 
faulty voltage waveform with reduction in peak volt-
age in the positive cycle, with a negative mean voltage 
of 25.48V. SB3 switch fault causes a similar effect with 
reduction in voltage in the negative cycle as shown in 
fig. 6(d) and results in positive mean voltage (+25.48 
V.)   Hence, the polarity of mean voltage alone varies for 
SB2 and SB3 fault.

Single switch fault (SA1, SA4), (SA2, SA3), (SB1, SB4), 
(SB2, SB3), (SC1, SC4), (SC2, SC3) result in similar RMS 
voltage and THD as shown in fig.5 (a) and (b) with varia-
tion in mean voltage as shown in Fig.5(c). 

As indicated in fig.5(c) double switch faults in certain 
scenario causes variation of mean voltage alone. For 
instance, the double switch (SC1 and SC3), (SC2 and 
SC4) results in similar value of RMS voltage and THD. 
However, the mean voltage varies in polarity as (-7.62, 
+7.62) respectively.

Thus, in some fault scenarios, though Vrms and THD 
are similar, the mean voltage exhibits a change in volt-
age polarity or magnitude, which serves as an essential 
feature for fault identification.

The system identifies the label or switches in which 
fault had happened. Only from the labels, label 1 is 
classified as no fault, label 2-13 is classified as single 
switch fault and labels 14 to 76 is classified as double 
switch fault. Fault classes 77 to 79 are identified as in-
put source faults.

5 Data Preprocessing

FFT profile (up to 19th harmonics) are taken and PPCA 
is applied to extract essential information and reduce 
the dimensionality of data. The PPCA method is used 
to transform a group of correlated data into a lower-
dimensional set. PPCA iteratively refines the model pa-

rameters to maximize the likelihood of the actual data. 
By mapping data onto a lower-dimensional substruc-
ture, it retains most of the original data’s variation. The 
aim of PCA is to find a set of principal components that 
captures the most variance information. 

The flow chart of fault diagnosis is represented in fig. 
2. The PPCA relates the actual variable with reduced 
dimension latent variable which induces a correspond-
ing distribution in the data space and given by Eq. (1)

 µLMh U H �� � �     (1)

H is the latent variable principal score of reduced di-
mension harmonics and e is multivariate Gaussian er-
ror rate, µ the mean vector, ULM is the linear transfor-
mation matrix determined by maximum likelihood 
techniques. 

The procedure is described as follows:
i)  Input harmonics hd∗q and error(ε) where P and R 

are orthogonal matrices.  
ii)  Determine the empirical mean of harmonics us-

ing Eq. (2) and co-variance using Eq. (3)
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iii)  Decompose A as A = PDRT where D is the Diago-
nal matrix

iv)  Find Eigen values λ1, λ2 … λr using a diagonal ma-
trix D = diag (d1, d2, … dr) r = min (d, b) with d1 ≥ 
d2 … ≥ dr

v)  Arrange eigen values in descending order; λ j ≥ λ 
j+1 

 where (1 ≤ I … ≤ d – 1), 
� �� �2 2

 1  i min d,qi id� � � ��  for j=1 to d-1 do
 Pj = Rj,1
vi)  Calculate Reconstruction error based on Eq. (4)
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 If Q < ε then b=j; j=d-1
vii)  Find variance and orthogonal matrix of maximum 

likelihood by Eq. (5) and (6) respectively
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The reduced dimensional output matrix of the PPCA is 
the first five eigen values represented by H = [λ1, λ2 … 
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λ5], ULM is the linear transformation matrix decided by 
maximum likelihood techniques, µ the mean vector.

6 Machine learning algorithms

6.1 Support vector machine (SVM)

Support Vector Machine (SVM) is primarily employed 
for regression and classification problems. It functions 
exceptionally well in circumstances where exacerbated 
boundaries for decision-making are to be established. 
The goal of SVM is to split the data points into separate 
fault categories and optimize the distance between 
fault classes.

The reduced dimension matrix xi is xi = [Vmean, Vrms, 
THD, H] where H= [λ1, λ2 … λ5] is obtained by PPCA and yi 
is the output fault classification [1, 2,…..79] associated 
with each xi. xi represents data point variables neces-
sary for fault classification of Fi. Arbitrary hyperplane is 
characterized as a series of points meeting hyperplane 
as given in Eq. (7)  

 0iW x b� � �        (7)

where °  is scalar product; W is weight/normal vector 
perpendicular to plane; b is the bias. 

W= (w1, w2 … wp) and xi = (xi1, xi2 …, xip), the scalar 
product is represented in Eq. (8)

 

1

p

j ij
i

w xi w x
�

���       (8)

The most important part of SVM method is to obtain 
weight vector (w) and bias value b such that hyper-
plane equation specified by Eq. (1) maximizes the 
margin between fault classes. The offset of maximum-
margin hyperplane is b / ||W|| and    ||W|| denotes the 
length of vector W. The goal is to find the hyperplane 
that separates fault classes with minimum error. For a 
maximum margin hyperplane to compute the support 
vector on either side the optimization problem is for-
mulated as Eq. (9)
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C is the regularization parameter to avoid overfitting 
and ξ is the slack variable which measures error made 
at point (xi, yi,)), ϕ is the function that transforms xi from 
p to q dimensions. The harmonic measurement is too 

close, so Kernel function K is used to denote the prox-
imity between samples xi and xj. The Lagrange multi-
plier is used to determine the weight vector w and bias 
b from the solution αi  as shown in Eq. (10)
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RBF kernel (where σ > 0 is a user defined parameter) 
is given by Eq. (11)

� �
2

2
,  exp   

2

i j
i j

x x
K x x

�
�

�
� �

                  (11)

6.2 KNN (K nearest neighborhood)

KNN is an instance-based technique that classifies new 
data points through groups based on the group which 
has the greatest number of members among its near-
est neighborhoods. KNN establishes prediction based 
on correlations with adjacent points instead of spe-
cifically learning a model. The KNN is based on the Eu-
clidean distance between xi and yi. SVM performance 
is vulnerable to the regularization parameter (C) and 
kernel parameters whereas KNN effectiveness depends 
on the selection of K and the distance metric. The Eu-
clidean distance with n number of training samples is 
computed by Eq. (12) 

 2

1

 
N

i i
i

x y
�

��                      (12)

The KNN algorithm is implemented as follows:
-  Calculate the distance between x_new and x us-

ing the distance metric. Store the distances and 
their corresponding indices.

- Choose K Neighborhoods based on the calculat-
ed distances. Count the occurrences of each class 
among the K neighbors. Determine the fault class 
with the highest occurrence rate as the predicted 
fault class for X_new. 

6.3 Decision tree (DT)

Decision Tree continuously splits the feature set into 
sections to generate a hierarchical tree-like decision-
making framework. Every internal node point in a deci-
sion tree is based on the characteristics [Vmean, Vrms, 
THD, H]. To reduce the variance, the most effective 
characteristic is selected, which divides the data at eve-
ry node. The process persists until a stopping criterion, 
namely tree depth is met.  The designing parameters 
of DT are entropy and Gini Index (GI), samples in the 
leaf (minimum), depth of the tree, and the splitter. En-

K. Rangasamy; Informacije Midem, Vol. 54, No. 1(2024), 51 – 63



59

tropy and GI are more responsive to node probability 
changes. 

For each feature:
(i) Calculate the impurity of the current node using 

an entropy using Eq. (13)

 
 

� � 2
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n

i i
i

Entrophy S Plog P
�

��                  (13)

 where Pi is the probability of fault classes, S is the 
case set and n is the number of fault classes.

(ii)  Calculate information gain that indicates the re-
duction in impurity using Eq. (14)

 Gain = Impurity Before Split - Weighted Average 
Impurity after Split
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n

i
i

i

SGain Entrophy S Entrophy S
S�

� �� (14)

 S-Sample of entire fault input
 Si-Sample input of ith fault class
(iii)  Select the feature with the highest information 

gain as the splitting attribute.
(iv)  Create a root node with the selected feature.
 For each possible value of the selected feature:
 Create a child node. Recursively apply the algo-

rithm to the subset of training data correspond-
ing to that value and the remaining features. 

 Attach the child node to the root node. 
 Return to the constructed Decision Tree.
(v)  Compute information gain for each feature and 

choose the feature with the highest gain. 

DT follows numerous paths if their input information 
is slightly modified. Reliability and stability are essen-
tial in fault identification. During the validation of the 
proposed fault analysis technique, single and double 
switch OCF classes are exactly diagnosed, and the 
faulty MOSFETs are located with an accuracy of 99.32 
%.

6.4 Extreme machine learning 

To improve the performance of fault diagnosis, a 
bagged ensemble learning algorithm is employed. 
Bagging refers to an ensemble technique that gener-
ates multiple base models by training each on a boot-
strapped sample of the data (randomly selected data-
set with replacement). Ensemble Learning with three 
predictive algorithms namely SVM, KNN and decision 
tree are employed in this paper. The prediction from 
each base model is then selected by majority voting 
techniques, where classification is done based on the 
fault class with maximum number of votes as shown 
in fig.7.

Figure 7: Flow chart of Ensemble Learning

7 Experimental results

The experimental platform of a thirteen-level inverter 
shown in fig.8. is established with MOSFET. In addition, 
the FFT spectrum of the output voltage of the ACMLI 
was computed by DSP TMS320F28034 controller. An 
open-circuit fault was created by removing the gate 
signal, and the voltage under faulty condition is meas-
ured.

Figure 8: Experimental Model
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The voltage signals are then processed using DSP, har-
monics and THD are computed by employing FFT. The 
mean average voltage of ac waveform is computed by 
sampling the ac voltage over a period and computing 
the mean value digitally.

The experimental data set is obtained for 1183 data 
samples, of which 948 are used as training data, and 
the remaining 235 are taken as testing data. 

From Fig. 9(a) –(d), it is evident that noise impact in 
experimental data is high when fault condition is per-
formed in real-time hardware. Ensemble learning is 
suitable for this category as it lowers the variance with-
in a noisy dataset and yields higher accuracy, when 
compared to other ML techniques. In the experimental 
setup, healthy, OCF, input source faults are examined. 
The OCF is established by removing the gate signal 
from the related switch. Many samples of the output 
voltage are taken for the same fault condition to pro-
vide complete insight into the fault classes.

Fig. 9(a) indicates the output voltage waveform for the 
healthy class without fault.  Fig. 9(b) and 9(c) indicate 
single and double switch faulty instance taken from 
the experiment. During fault in switches SC3 and SC2 
in different legs of the H-Bridge the levels vary multiple 
times in the same instance as shown in fig 9(b) which 
is similar to the simulation result shown in fig. 6(i). Dur-
ing simultaneous failure of switches SC1 and SC4 in 
the same leg, one or more voltage levels are missed as 
shown in fig.9(c). Fault in the input source of H-bridge 
2 results in three-level waveform as shown in fig. 9(d) 
which is in correlation with the simulation result shown 
in fig. 6(q).

To eliminate randomness, each method was repeated 
ten times, and the averaged results are obtained. The 
parameters given in Eq. (15) – (18) are computed for all 
the proposed methods. Accuracy provides the correct-
ness of predictions.  Precision reveals the accuracy of 
positive predictions, and recall implies the capability 
of the model to correctly identify all positive instances. 
The F1 score is the harmonic mean of precision and re-
call. Specificity provides models with the ability to cor-
rectly identify negative instances.

 TP TN
Accuracy 

TP TN FP FN

�
� � �

                   (15)

TP
Precision  

TP FP
�

�
                  (16)

 TPRecall  
TP FN

�
�

                    (17)

 2*Precision*RecallF1  
Precision Recall

�
�

                   (18)

It is observed from Table 3 that SVM is superior in per-
formance. KNN suffers from the issue of overfitting and 
thus classifies the fault with a relatively low accuracy of 
95.54%. Decision trees when used alone, have the low-
est accuracy as it is  not benefited by ensemble tech-
niques that use numerous decision trees or ML algo-
rithms to boost accuracy. 

Thus, bagging technique EML is applied, and accuracy 
rate of fault diagnosis is 99.32% with the training set 
and test set in the ratio of 80%: 20%. The results reveal 
the fact that EML classifier using PPCA dimensionality 
reduction achieve fault classification with strong char-
acteristic information and high classification accuracy. 
In order to validate EML the results are compared with 
existing literature which is presented in Table 4. 

Further online fault detection requires high-perfor-
mance computation with rapid decision making. Fast 
diagnosis of faults requires Raspberry Pi with a dual-
core Arm Cortex-M0+ processor for training of machine 
learning algorithms.  In real time if any of the H-bridges 
in the system fail, the faulty H-bridge is bypassed and 
switching pattern reconfiguration is performed to op-
erate the system with reduced THD and balanced volt-
age in positive and negative half cycle. Additional H-
bridge cells with relay circuits are employed as auxiliary 
sources to clear the fault in real time. Auxiliary H-bridge 
cells and chopper circuit that generate dc voltage in a 
1:2:3 ratio is employed as redundant circuits.  In case of 
fault, the H-bridge can be disconnected, and auxiliary 
H-bridge cells and voltage of the chopper can be con-
nected through a relay circuit. 

Table 3: Parameters obtained in ML Techniques

SVM KNN DT ELM
Training Accuracy 97.9 95.54 91.77 99.32
Testing Accuracy 96.58 94.44 88.91 98.74
Precision 97.40 93.02 90.51 99.20
Recall 95.74 95.54 89.78 98.41
F1 Score 96.57 94.26 89.82 98.80
Specificity 97.44 93.44 90.37 99.12

8 Conclusion

This article presents ELM machine learning for single 
and double switch open circuit fault diagnosis in AC-
MLI. Simulation and experimental data sets of many 
samples are taken, which enhance fault features and 
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improve the accuracy of fault diagnosis. This paper 
identifies that faults in different switches in certain sce-
narios yield identical Vrms and THD values. Thus, it is 
necessary to take into consideration the mean voltage 
and FFT harmonic spectrum from (2nd to 19th). Dimen-
sionality technique PPCA is applied to reduce the di-

mension of harmonics and trace the most significant 
features in the dataset. 

Machine Learning algorithms namely SVM, KNN and 
DT are applied individually for fault diagnosis in ACMLI, 
and their performance is analyzed. ML algorithms SVM, 

Table 4: Comparison with Existing literatures

ANN Techniques Topology Techniques Number 
of levels

Accuracy

PCA-BP [22]  Symmetric CMLI FFT-  5-level  88.7%
RPCA-SVM [15] Symmetric CMLI FFT 5-level 92.5%
PPCA-SVM [18] Symmetric CMLI FFT 5-level 97.6%
DCNN [19] Symmetric CMLI Image processing 5-level 98.16%
Combined Optimizer Fault Classifier [20] Symmetric CMLI FFT 5-level 95.56%

AIRMAR [21] Symmetric (Nested  
Neutral Point Piloted) MLI

Image processing 5-level 99.33%

Multiscale Kernel CNN [22] Symmetric CMLI Short-time Fouri-er 
transform (STFT) 15-level 98.3%

Mean Voltage Decision trees [23] Neutral Point Clamped MLI Pole voltage sign 11-level 98.14%

CSA optimized CNN [24] Symmetric CMLI Mean and RMS  
voltage, THD 9-level 99.84%

BPN [25] Asymmetric CMLI
Mean and RMS volt-
age, THD

7-level 
and 

9-level
99.771%

Proposed Method Asymmetric CMLI Mean and RMS volt-
age, THD 13-level 98.74%

Figure 9: Experimental Results: (a) Normal condition (b) Fault in switch SC3 and SC2 (c) Fault in switch SC1 and SC4 
(d) Fault in input source2

(a) (b)

(c) (d)
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KNN and DT are then linked together by a bagging ML 
approach with maximum voting  technique termed 
as Ensemble Machine Learning (EML). Simulation and 
experimental investigations are carried out to validate 
the performance of EML in ACMLI. The experimental 
results show an accurate categorization rate of 99.32%. 
ELM provides lower variance within a noisy dataset 
and thus yields higher accuracy when compared to 
SVM, KNN and DT algorithms. The study demonstrates 
that EML classifier with PPCA dimensionality reduction 
technique achieves the highest classification accuracy 
in fault diagnosis of ACMLI. The potential limitation of 
the study is input source fault, and double switch fault 
in the same leg results in similar kind of fault. To over-
come this limitation, additional voltage sensors can be 
provided to individual input sources to detect source 
fault. Further research may also be carried out on fault 
diagnosis based on image processing of the output 
voltage waveform. 
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