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Abstract: In the literature, there are memristor models based on nonlinear drift mechanisms and window functions. Memristors can be 
employed to model resistive memories. When the resistance of a memristor undergoes a transition from its lowest value to its highest 
value, or vice versa, this phenomenon is referred to as resistive or memristive switching. The energy required for this transition holds 
particular importance, especially in the context of resistive computer memory and digital logic applications. Experimental measurements 
can be used to determine the resistive switching energy, and it should also be possible to calculate it theoretically based on the 
parameters of the memristor model utilized. Recently, the resistive switching times of some of the nonlinear dopant drift memristor 
models have been examined analytically considering especially their memory and digital circuit applications. In the literature, to the 
best of our knowledge, the resistive switching energy of the nonlinear dopant drift memristor models has not been calculated and 
examined in detail. In this study, the memristive switching energy of some of the well-known memristor models using a window function 
is calculated and found to be infinite. This is not feasible according to the experiments in which a finite resistive switching energy is 
consumed. The criterion that a memristor must have a finite resistive energy is also presented in this study. The results and the criterion for 
the resistive switching energy presented in this paper can be utilized to build more realistic memristor models in the future.
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Preučevanje upornostne preklopne energije nekaterih 
modelov memristorjev z nelinearnim odstopanjem 
dopanta
Izvleček: V literaturi obstajajo modeli memristorjev, ki temeljijo na nelinearnih mehanizmih odstopanj in okenskih funkcijah. 
Memristorji se lahko uporabijo za modeliranje uporovnih pomnilnikov. Ko upornost memristorja preide iz najnižje vrednosti v 
najvišjo ali obratno, se ta pojav imenuje uporovno ali memristivno preklapljanje. Energija, ki je potrebna za ta prehod, je še posebej 
pomembna, zlasti v kontekstu uporovnega računalniškega pomnilnika in digitalne logike. Za določitev energije uporovnega preklopa 
se lahko uporabijo eksperimentalne meritve, prav tako pa jo je mogoče teoretično izračunati na podlagi parametrov uporabljenega 
modela memristorja. Nedavno so bili analitično preučeni uporovni preklopni časi nekaterih nelinearnih modelov memristorjev z 
odstopanjem dopanta, pri čemer so bile upoštevane zlasti njihove aplikacije za pomnilnike in digitalna vezja. V literaturi, kolikor nam 
je znano, uporovna preklopna energija memristorskih modelov z nelinearnim odstopanjem dopanta ni bila izračunana in podrobno 
preučena. V tej študiji je izračunana energija memristivnega preklopa nekaterih znanih modelov memristorjev z uporabo okenske 
funkcije in ugotovljeno je, da je neskončna. Glede na poskuse, pri katerih se porabi končna uporovna preklopna energija, to ni 
izvedljivo. V tej študiji je predstavljeno tudi merilo, da mora imeti memristor končno uporovno energijo. Rezultati in merilo za uporovno 
preklopno energijo, predstavljeni v tem članku, se lahko v prihodnosti uporabijo za izdelavo bolj realističnih modelov memristorjev.

Ključne besede: memristor, modeli memristorjev, uporovni pomnilniki, funkcija okna, memristivno preklapljanje, uporovno 
preklapljanje
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1 Introduction

In his influential article published in 1971, Dr. Chua in-
troduced the memristor as the novel and fourth pas-
sive circuit element, joining the ranks of the resistor, 
inductor, and capacitor [1]. A perfect memristor is a 
passive circuit element that possesses two terminals 
and exhibits a nonlinear correlation between magnetic 
flux and electrical charge. The memristor has a resist-
ance that varies by its charge, known also as mem-
ristance, and it also consumes power [1]. In 1976, a class 
of systems known as memristive systems, possessing 
properties akin to memristors, was introduced [2]. After 
nearly four decades after Dr. Chua’s initial proposition, 
a nano-sized TiO2 thin film memristive system devel-
oped in Hewlett-Packard (HP) laboratory was demon-
strated to possess memristor-like traits similar to those 
anticipated for its operation [3]. Hence, in 2008, the 
revelation of a novel nonlinear electronic circuit ele-
ment, demonstrating memristor-like characteristics 
within certain operation ranges, captured global atten-
tion, leading to a surge in research and exploration of 
memristors and memristive systems [4-9]. Memristors 
have been explored for their non-volatile memory ca-
pabilities and dynamic load applications, as discussed 
in [4]. Memory phenomena are frequently observed 
in nanoscale devices, and certain effects can be ef-
fectively modeled using memristors [5]. The resistive 
memories, which are popular study areas nowadays, 
also behave as memristors and are regarded as mem-
ristors by Chua [6]. Domaradzki et al. provide a review 
of the applications of memristors in circuit design and 
computer technology [7]. The usage of memristors in 
various applications, such as memory, analog, logic, 
and neuromorphic circuits, is investigated in [8]. Mem-
ristor-based circuit applications encompass a variety of 
electronic circuits, including amplifiers [9, 10], oscilla-
tors [11], filters [11, 12], computer memories [6] and ar-
tificial neural network circuits [13]. A significant portion 
of memristor research has been devoted to modeling 
this novel circuit element. The pioneering and most 
basic physical model of a memristor was initially intro-
duced in [3]. Williams and colleagues proposed the HP 
memristor model, assuming that the ion drift speed 
inside the memristor is directly proportional to the 
memristor current and remains uniform throughout 
the memristor. While the model is straightforward to 
comprehend, it incorporates a linear dopant drift and is 
considered obsolete now. Due to the discrepancy with 
the actual heterogeneous dispersion of ions, researchers 
have developed memristor models with nonlinear ion 
drift speeds, utilizing window functions to address this 
issue [3, 14-18]. The models presented in [14-16] face 
challenges related to boundary lock issues. To address 
this problem, researchers have developed polarity-
dependent window functions, as described in [15-17].

Chua has classified resistive memories as memristive 
systems [6]. Even after a memristor is turned off, it re-
tains its last resistance value, and upon repowering, it 
resumes operation from that resistance value [1, 3, 6]. A 
memristor does not consume power when its current is 
zero [6]. This unique characteristic makes Non-Volatile 
Random-Access Memory (NVRAM) one of the most 
significant applications of memristive systems [4-8]. 
ReRAM application of the TiO2-based memristors is re-
viewed in [19]. Moreover, there is potential to develop 
high-density memristor-based Static Random-Access 
Memories (SRAMs) that consume low-power [20]. The 
initial discovery of the ReRAM structure involved nickel 
oxide (NiO) in 1964 [21]. Since then, various materials 
have been identified as suitable candidates for creat-
ing resistive memories [5, 7, 22-25]. The following ex-
amples are only a few of these materials. Silicon oxide 
has been utilized in the fabrication of resistive memo-
ries [22]. Moreover, the examination of conducting na-
nofilaments within a Pt/TiO2/Pt system during resistive 
switching has been investigated in [23]. [24] explores 
the memristive switching mechanism in metal/oxide/
metal nanodevices. Furthermore, [25] presents a com-
prehensive examination of both bipolar and unipolar 
operations in Resistive Random Access Memory (Re-
RAM). Waser et al. suggest a broad classification into 
thermal, electrical, or ion-migration-induced switch-
ing mechanisms [26]. Choi et al. conducted atomic 
force microscopy studies using different vacuum 
conditions, showing a strong correlation between re-
sistance switching and the creation and elimination 
of conducting spots [27]. The experimental findings 
presented in [28] demonstrate that the introduction 
of Si or Al implantation into HfO2 films leads to lower 
electroforming voltages and enhances the reproduc-
ibility of resistive switching. Sivkov et al. investigated 
the impact of thickness variation and electrode size on 
the resistive switching properties of ZrO2 [29]. Linn et 
al. investigated the resistive switching properties of the 
complementary resistive switches (CRS) and explored 
their potential utilization in passive nano crossbar 
memories to achieve power consumption reduction 
[30]. Rosezin et al. showcased the vertical integration 
of Complementary resistive switch cells utilizing Cu/
SiO2/Pt bipolar resistive switches [31]. By employing 
CRS-based memristors, 3D stacking crossbar memories 
experience reduced leakage current [32]. However, it is 
important to note that such CRS-based memories may 
require reconstructive circuits to rewrite the deleted in-
formation during reading [33].

Memristive materials find application in digital circuitry 
as well. The literature also explores various memristor-
based digital circuits, including reconfigurable logic cir-
cuits, flip-flops, latches, and more [34-40]. Memristor-
based programmable logic circuits can be developed 
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[34]. The memristor-based flip-flop circuits possess 
nonvolatile characteristics and operate with low power 
consumption [35-37]. Memristors make the production 
of reconfigurable logic gates and devices possible [38, 
39]. However, it is important to consider that imple-
menting memristor-based logic and memory circuits 
might necessitate the use of adaptive writing circuits 
[33-40]. Vourkas et al. provide an overview of the de-
sign of memristor-based logic circuits [40].

The phenomenon in which a memristor’s resistance 
transitions from Ron to Roff or from Roff to Ron when sub-
jected to an applied voltage is referred to as ‘memris-
tive switching’ or ‘resistive switching’ [41]. The duration 
needed for this process is referred to as the “memristive 
switching time” or “resistive switching time”. The writ-
ing or erasing of memristor-based memories, as well as 
other memristor-based digital applications mentioned 
earlier, rely on the occurrence of memristive switching. 
This emphasizes the significance of the memristive or 
resistive switching time as a vital parameter in evalu-
ating the effectiveness of memristor-based computer 
memories and memristor-based digital circuits [6, 8, 18, 
30, 33, 41, 42]. Wang et al. have explored the concep-
tual and experimental aspects of memristive switching 
time, employing a piecewise linear charge-flux char-
acteristic [41]. This time value may vary depending on 
the direction of the memristor current [15, 17, 18]. In 
[43], researchers have analyzed and conducted experi-
mental investigations to explore the consequences of 
delayed memristive switching in memristor-based ar-
tificial neural networks. The research presented in [44, 
45] involves the calculation of the memristive switch-
ing time using the HP memristor model. [46] proposes 
that memristive switching can be utilized for calcu-
lating the memristance function. In [18], the resistive 
switching times of the memristor models presented in 
[3, 14-17] are calculated using their respective window 
functions for both polarities, the computation of com-
plex integrals for determining the resistive switching 
times is performed using the Wolfram Alpha program, 
and it is observed that the integrals diverge except the 
HP memristor model. The solutions of these integrals 
are analyzed and interpreted, leading to a diagnosis of 
the boundary unreachability problem in these models 
with an infinite switching time and the proposal of a 
new memristor model that provides a finite switching 
time [18].

In literature, different types of memories are compared 
for their power consumption [20, 30-32, 39, 47-49]. 
However, there are only a few papers regarding mem-
ristor power consumption [50-53]. In [50], an AC power 
formula for memristors under small signal excitation 
is given. In [51], the power consumption of memris-
tor-based relaxation oscillators is examined with the 

instantaneous memristor power formula. In [39], it is 
shown that the tolerances of the memristors result in a 
different switching time for each memristor and, there-
fore, a different energy loss for writing and deleting a 
memristor. The resistive switching energy besides resis-
tive switching time is an important parameter in mem-
ristor-based memory and digital applications such as 
flip-flops, logic gates, etc.  The required resistive switch-
ing energy should be calculatable with the parameters 
of the memristor model used to model the device. The 
paper aims to examine the resistive switching energy of 
some of the well-known memristor models. In this pa-
per, first, the resistive or memristive switching energy 
formula for the nonlinear drift speed memristor mod-
els is derived, and, then, the memristive switching en-
ergy of the memristor models given in [3, 14-18] is tried 
to be calculated with their window functions consider-
ing both polarities. The WolframAlpha program is used 
to solve the definite integrals of the resistive switching 
energy. Some of the definite integrals are shown to di-
verge. The interpretation of the results is done. 

This paper is structured as follows. In the second sec-
tion, the nonlinear dopant drift memristor model and 
the window functions used in this study are summa-
rized. In the third section, the derivation of the integral 
formula to calculate the memristive switching energy 
considering the memristor polarity is made. Analytical 
solutions of the switching times of the nonlinear do-
pant drift memristor models are sought in the fourth 
section. The paper is finished with the conclusion sec-
tion. 

2 Memristor models and their window 
functions

This section provides a brief explanation of the memris-
tor models employed in this study. A memristor, which 
is also a memristive system [2], is described as an (ideal) 
device where the charge of the memristor serves as the 
system’s state variable. Nevertheless, the present-day 
terminology refers to thin-film systems, which fall un-
der the category of memristive systems, as memristors 
[54]. One particular memristor model, characterized by 
nonlinear dopant drift, is represented by the following 
equations:

 � � � � � �. .v t R x i t�     (1)

 � � � �2/   . , .on
v
Rdx dt i t f x i
D

��    (2)

where i(t), ν(t), R(x), Ron, x(t) and f (x, i) are the current, 
voltage, resistance, minimum resistance, state variable, 
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and polarity-dependent window function of the mem-
ristor, respectively, D is the total length of the TiOx re-
gion, and μϑ is the dopant mobility of the TiO2 region.

The state variable of the memristor, which represents 
its normalized oxidized length, can be mathematically 
expressed as

 x w D� �      (3)

where  denotes its current oxidized length.

To determine the rate of drift speed in this memristor 
model, a window function is introduced, which in-
volves multiplying the memristor current according to 
equation (2) [3, 14-18]. The memristor memristance or 
resistance is expressed as

 � � � �  1on offR x R x R x� � � � �             off off onR R R x� � �  (4)

Based on the model presented in [3] a memristor’s re-
sistance varies within the range of its minimum value, 
Ron, to its maximum value, Roff. Consequently, the fol-
lowing statement always holds for the resistance of a 
memristor:

� �off onR R x R� �     (5)

This research utilizes memristor models proposed by 
Strukov [3] Joglekar [14], Biolek [15] Prodromakis [16] 
Zha [17], Mutlu-Kumru [18]. A comprehensive over-
view of the memristor models employed in this study 
is available in [55]. These models are characterized by 
window functions, which act as indicators of the de-
gree to which a memristor emulates an ideal memristor 
[15]. The corresponding window functions are detailed 
in Table 1.

While the literature represents polarity-dependent 
window functions as f(x), in this study, they are repre-
sented as f(x, i) to include the polarity variable.

The resistance value or memristive state variable of 
these memristors begins to change only when both 
their window function and current are not equal to 
zero. The window functions described in [14, 16], which 
exhibit zero dopant speeds at the boundaries of the 
memristive layer, face an issue known as the boundary 
lock problem: at x = 0 and x = 1, their resistance value, 
memristive state-variable, or window function f(x) re-
mains unchanged regardless of the value of current 
flowing. The models presented in [15, 17-18] do not 
experience these problems. All the window functions 
listed in Table 1 are phenomenal functions.

The experimental data might lead to the development 
of more realistic window functions with improved ac-
curacy in the future. The window function of the HP 
model is regarded as being equal to one [3]. The “stp()” 
function in Table 1 represents the unit step function 
and is defined as follows.

 
� � 1 , 0

0 , 0
i

stp i
i
��

� � ��
    (6)

Comparisons of the mentioned window functions, 
whose resistive switching time is examined in [18] are 
given in Table 2. 

The Strukov model is characterized by a non-scalable 
quadratic window function and suffers from a bound-
ary lock issue. This means that once the boundary is 
reached, the regions become fixed at the boundaries, 
causing the model to function like a resistor. Even 
changing the polarity cannot resolve the problem be-
cause f(0) = f(1) = 0. The window function of the Jogle-
kar model incorporates a shaping parameter (p), which 
allows for modifications to its shape. However, it also 
exhibits a boundary lock issue. On the other hand, the 
Biolek model features a current polarity-dependent 
window function.

When the current of the Biolek memristor model is pos-
itive and its window function at x = 1 is 0, this causes 
the memristor to act as a linear time-invariant (LTI) re-
sistor. However, when the current of the Biolek memris-
tor model is negative and its window function at x = 1 
is 1, this results in a change in the memristor’s resist-
ance. On the other hand, when the current of the Biolek 
memristor model is negative and its window function 
at x = 0 is 0, the memristor behaves as a resistor. But, 
when the current of the Biolek memristor model is pos-
itive and its window function at x = 0 is 1, this leads to 
a variation in the memristor’s resistance. Altering the 
current polarity in the model leads to a change in its re-
sistance, thereby eliminating any boundary lock issues. 
Nevertheless, it is important to note that the model 
lacks scalability.

The Prodromakis model exhibits a boundary lock prob-
lem, but its window function can be scaled using the 
parameter j. Moreover, the Zha model integrates the 
polarity dependency of Biolek’s window function with 
the scalability of Prodromakis’ window function.
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Table 1: The memristor window functions used in this study

The model Its window function  (f(x) or f(x, i))

HP  � � 1f x �

Strukov  � � 2f x x x� �

Joglekar  � � � �21 2 1 pf x x� � �

Biolek  � � � �� �� �2
, 1

p
f x i x stp i t� � � �

Prodromakis � � � �� �21 0.5 0.75
p

f x j x� �� � � �� �
� �

Zha
 
� � � �� �� �2, 1 0.25 0.75

p
f x i j x stp i� �� � � � �� �

� �

Mutlu-Kumru  � � � � � �1 2, 1 . .n nf x i m x stp i m x stp i� � �

Table 2: Comparison of the memristor window func-
tions used in this study

Window functions

St
ru

ko
v

Jo
gl

ek
ar

Bi
ol

ek

Pr
od

ro
m

ak
is

Zh
a

M
ut

lu
-K

um
ru

Variables of the  
window function

x x x, i x x, i x, i

Formability No Yes Yes Yes Yes Yes
Formability parameter - p p p p n
Scalability No No No Yes Yes Yes
Scalability parameter - - - j j m1, m2

Problem of boundary 
lock

Yes Yes No Yes No No

Boundary  
unreachability

No No Yes No Yes No 

The resistive switching times of the memristor models 
given in Table 3 are calculated for each polarity in [18]. 
Only, the HP and Mutlu-Kumru Models have given fi-
nite resistive switching times values.

3 Derivation of resistive switching 
energy formula of nonlinear dopant 
drift memristive models

The circuits, which are shown in Fig. 1, can be used to 
make the memristive switching occur. The memristor in 
the circuit in Fig. 1a is forward-biased and a positive DC 
voltage is applied to it, and the switch is turned on at a 
time equal to zero. If the memristor resistance is equal 
to Roff at t = 0, the memristor resistance falls down from 
Roff to Ron in this case. The memristor in the circuit in Fig. 
1b is reverse-biased and a negative DC voltage is ap-
plied to it, and the switch is turned on at a time equal 
to zero. If the memristor resistance is equal to Ron at t 
= 0, the memristor memristance goes from Ron to Roff 
in that case. For polarity dependent memristor models, 
the memristive or resistive switching Energy must be 
found for each polarity. 

Figure 1: The memristor supplied by a) a positive DC 
voltage source for the forward resistive switching (x goes 
up from 0 to 1) and b) a negative DC voltage source for 
the reverse resistive switching (x goes down from 1 to 0)

Table 3: The resistive switching times of the memristor models 

The model Its resistive switching time in the forward  
direction

Its resistive switching time in the reverse  
direction

HP 
 � �2

2
on off

V on dc

D R R
R V�

�  � �2

2
on off

V on dc

D R R
R V�

�

Strukov ∞ ∞
Joglekar ∞ ∞
Biolek ∞ ∞
Prodromakis ∞ ∞
Zha ∞ ∞

Mutlu-Kumru
 

1 12 1 1
on off off

dc dc

R R Rn n
V Km n V Km n
�� �� � � ��� �� � � �� �� � � �� �

 

2 2

1
2 1 1

on off off

dc

R R Rn n
V K m n m n

�� �� � � ��� �� � � �� �� � � �� �
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Considering the nonlinear memristor models explained 
before, the memristive switching energy can be calcu-
lated as follows. The current of a forward-biased mem-
ristor supplied with the constant voltage Vdc is

 
� � � �

� � � �
. dcv t Vi t

R x R x
� �     (7)

The power of the memristor is

� � � � � � � � � �
� �

� �
� �

2 
. dcv t V

p t v t i t v t
R x R x

� � �  (8)

For a forward-biased memristor, the energy consump-
tion of the memristor, in which x(t) rises from 0 to 1, is 
calculated as

 
� � � �

� �

2

0 0

 SWP SWP dc
SWP

V
E p t dt dt

R x
� �

� �� �   (9)

The derivative of the state variable of the memristive 
models can be written as

 
� � � � � �

� �2 2
V on dcV on R V f xRdx i t f x

dt D D R x
��

� �             (10)

By rearranging (10),

 � �
� �

2

V on dc

D R x dx
dt

R V f x�
�                   (11)

During the forward resistive switching: at t = τSWP ,  
x(τSWP) = 1 and, at t = 0, x(0) = 0. Submitting Eq. (11) into 
Eq. (9):

 � �
� �

� �
� � � �

2 2 21 1

0 0

 
.dc dc

SWP
V on dc V on

V D R x dx V D dxE
R x R V f x R f x� �

� �� �
 

� �
2 1

0
 .dc

V on

V D dx
R f x�

� �
   (12)

The energy or the integral in Eq. (12) depends on the 
window function of the forward-biased memristor. As-
suming that, after the forward resistive switching oc-
curs, for a short time, the device continuous on draw-
ing current since the applied pulse width is wider than 
its forward switching time (τSWP ≤ Tp), an additional con-
duction loss occurs. It can be calculated as:

 
� � � � � � � �

2 2  P P

SWP SWP

T T dc dc
CP P SWP

on on

V V
E p t dt dt T

R R� �
�� � � �� � (13)

Then, the total loss in this case can be found as:

P SWP CPE E E� �                   (14)

For a reverse-biased memristor, the switching voltage 
is negative and equal to -Vdc , the energy consumption 
of the memristor, in which x(t) falls down from 1 to 0, is 
calculated as

 
� � � �

� �

2

0 0

 SWN SWN dc
SWN

V
E p t dt dt

R x
� �

� �� �                 (15)

The energy or the integral in Eq. (12) depends on the 
window function of the forward-biased memristor. 

During the reverse resistive switching: at t = τSWN, x(τSWN) 
= 0 and, at t = 0, x(0) = 1. Submitting Eq. (11) into Eq. 
(15):

     (16)

Eq. (16) is the same as Eq. (13) but the window function 
for the correct polarity should be utilized to calculate 
the switching energy. 

The energy or the integral in Eq. (16) depends on the 
window function of the reverse-biased memristor. As-
suming that, after the reverse resistive switching oc-
curs, for a short time the device continuous on drawing 
current since the applied pulse width is wider than its 
reverse switching time (τSWN ≤ Tp), an additional conduc-
tion loss occurs. It can be calculated as:

 
� � � � � � � �

2 2  P P

SWN SWN

T T dc dc
CN P SWN

off off

V V
E p t dt dt T

R R� �
�

�
� � � �� � (17)

Then, the total loss can be found as:

 
NE  

SWN CNE E�=                   (18)

Considering Eq.s (12) and (16), for a nonlinear dopant drift 
memristor model, the resistive switching energy is propor-
tional to the DC voltage applied, and the memristor param-
eters, D, μv, and Ron, the switching voltage Vdc define the re-
sistive switching energy, the lower the minimum resistance 
of the memristor, the higher the resistive switching energy. 
However, the conduction loss of the memristor depends 
on only Ron for the forward-biased memristor and Roff for the 
reverse-biased memristor. If a memristor model’s window 
function is not dependent on polarity, the resistive switch-
ing energy for each polarity is the same:
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SWP SWNE E�                    (19)

4 Examination of resistive switching 
energy of nonlinear dopant drift 
memristive models

In this section, the switching energy of the examined 
memristor models can be found using the derived 
equations.

4.1 Resistive switching energy of the HP memristor 
model

The HP memristor model is the first memristor model 
given in the literature [3]. It is the simpler than the oth-
er memristor models examined in this study [18]. In this 
model, it is assumed that the linear dopant drift exists 
in the memristive element [3]. The window function of 
the HP memristor model is equal to one, i.e., f(x) = 1. 
The resistive switching energy of an HP memristor is 
calculated as

                 (20)

In [18] it is shown that the resistive switching time of 
an HP memristor for each polarity is the same. The re-
sistive switching energy of an HP memristor for each 
polarity is also the same.

4.2 Resistive switching energy of the memristor model 
with Strukov window function

The Strukov window function does not depend on the 
polarity of the memristor. It is expressed as

 � � 2f x x x� �                    (21)

Therefore, its resistive switching energy is the same for 
each polarity. Its resistive switching energy is found as

� �
2

1

0

 
dc

SWP SWN
V on

V D dxE E
R f x�

� � �
 2

1

2
0

  
dc

V on

V D dx
R x x�

�
��

� �
2

1
ln ln 1

0

dc

V on

V D x x
R

�
�

� � � �

                (22)

The resistive switching energy of the memristor model 
is infinite or its integral diverges. This is expected since 
the model has a boundary lock problem. In [18], its re-
sistive switching time is also found to be infinite. The 
resistive switching energy is the same for both direc-
tions since the Strukov window function is the same for 
each polarity.

4.3 Resistive switching energy of the memristor model 
with Joglekar window function

Joglekar window function does not depend on the po-
larity of the memristor either. It is expressed as

 � � 21 (2 1) pf x x� � �                   (23)

where p is a positive integer used to shape the window 
function.

That is why its resistive switching energy is the same for 
each polarity of the memristor. Using Wolfram Alpha 
for the evaluation of the integral, its resistive switching 
energy is found as

 

 (24)

where 
 

� �2
1

1 11,  ;1 ;2 2 2
pF x

p p
� �

�� �
� �

 is the hypergeometric 

function whose value becomes infinite for x = 1.

The resistive switching energy of the Joglekar memristor 
model is infinite or its integral diverges. This is expected 
since the model has a boundary lock problem. The re-
sistive switching energy is the same for both directions 
since the Joglekar window function is the same for each 
polarity. The memristive switching time of the memris-
tor model has also been found to be infinite in [18].
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4.4 Resistive switching energy of the memristor model 
with Biolek window function

The Biolek window function depends on the current 
polarity of the memristor. It can be given as

� � � �� �� �2
1

p
f x x stp i t� � � �                  (25)

That is why its resistive switching energy should be 
calculated for both polarities. For the reverse-biased 
memristor, i.e., for i ≤ 0, using WolframAlpha integral 
calculator, its resistive switching energy is found as

 

� �

2 1

2p0
 .

1 1
dc

SWN
V on

V D dxE
R x�

�
� ��

� � � �
2

2
1

11 11 1,  ;1 ; 1  
2 02 2

pdc

V on

V D x F x
R p p

�
�

� �� �
� � � � �� �� �

� �� �

 (26)

For the forward-biased memristor, i.e., for i > 0, using 
Wolfram Alpha integral calculator, its resistive switch-
ing energy is found as

� �
2 1

0
 .dc

SWP
V on

V D dxE
R f x�

� �

� �

2 1

2p0
 .

1
dc

SWP
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                 (27)
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SWP
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(28)

The resistive switching energy of the Biolek memristor 
model is infinite for each polarity. The resistive switch-
ing time of the Biolek memristor model has also been 
found to be infinite in [18] due to having the boundary 
unreachability problem. 

4.5 Resistive switching energy of the memristor model 
with Prodromakis window function

The Prodramakis window function does not depend on 
the memristor polarity either. It is expressed as 

 � � � �� �21 ( 0,5) 0,75
p

f x j x� � � �                  (29)

Therefore, its resistive switching energy is same for 
both polarities. Using WolframAlpha integral calcula-
tor, it is calculated as

 

� �� �
2 1

0 21 ( 0,5) 0,75
dc

SWP p
V on

V D dxE
j R x

�
�

� �
� � �

�   (30)

The resistive switching energy of the Prodramakis 
memristor model is found to be infinite or its integral 
diverges. This is expected since the model has a bound-
ary lock problem. The resistive switching energy is the 
same for both directions since the Prodramakis win-
dow function is the same for each polarity. The mem-
ristive switching time of the memristor model has also 
been found to be infinite in [18].

4.6 Resistive switching energy of the memristor model 
with Zha window function

The Zha window function depends on the memristor 
polarity and is expressed as

 
� � � �� �� �21 0.25 0.75

p
f x j x stp i� �� � � � �� �

� �
(31)

For the forward-biased memristor, i.e., for i > 0, using 
Wolfram Alpha integral calculator, its resistive switch-
ing energy is found as

� �� �
2 1

0 2
  

1 0.25 0.75
dc

SWP p
V on

V D dxE
j R x

�
�

� �
� �

�     (32)

The resistive switching energy of the Zha memristor 
model is infinite for each polarity. The resistive switch-
ing time of the Zha memristor model has also been 
found to be infinite in [18] due to having the boundary 
unreachability problem. 

4.7 Calculation of resistive switching energy of the 
memristor model with Mutlu-Kumru window function

In [18], a new memristor model without boundary lock 
and boundary unreachability problems have been pro-
posed. It was the only model besides the HP memris-
tor model whose switching times have been able to 
be calculated. The Mutlu-Kumru window function also 
depends on the polarity and is given as

 � � � � � �1 2, 1 . .n nf x i m x stp i m x stp i� � � �       (33)

The function f(x, i) considering the memristor polarity 
can be expressed as the following piece-wise function:

� � 1

2

1 , 0
,

, 0

n

n

m x i
f x i

m x i

� � ��� �
���

                 (34)

where n is the shaping constant, which is a positive 
number, m1 is the forward-polarity scaling constant, m2 
is the reverse-polarity scaling constant direction, i  is the 
memristor current.
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The Mutlu-Kumru window function for each polarity is 
shown in Figure 2. The resistive switching energy of the 
model should be calculated for both polarities. For the 
forward-biased memristor, i.e., for i(t) ≥ 0, using Wolf-
ram Alpha integral calculator, its resistive switching en-
ergy is found as

2 21 1

0 0
11

  
1 1

dc dc
SWP n n

V on V on

V D V Ddx dxE
R R mm x x� �
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dc dc
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xV D V D n
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n
� �

�
� �
� �� � �� �� � � ��� �� ��
� �

  (35)

For the reverse-biased memristor, i.e., for i ≤ 0, using 
Wolfram Alpha integral calculator, its resistive switch-
ing energy is found as

 2 21 1

0 0
22

 dc dc
SWN n n

V on V on

V D V Ddx dxE
R R mm x x� �

� �� �
 2

2 1
dc

V on

V D n
R m n�

� �� � ��� �

     (36)

(a)

(b)

Figure 2: The Mutlu-Kumru window function for a) the 
reverse biased memristor (i(t) < 0), various n values, and 
m2 = 1, and b) for the forward biased memristor (i(t) > 
0), various n values, and m1 = 1.

From Eq.s (35) and (36), it can be seen that the resistive 
switching energy converges except for n = 1. If n < 1, the 
resistive switching energy of the Mutlu-Kumru memristor 
model is negative, i.e., the Mutlu-Kumru cannot be used to 
model a memristor for n < 1. If m2 = m1, the resistive switch-
ing energy of the model for each polarity is the same:

SWP SWNE E�                    (37)

Also, for the Mutlu-Kumru model, the following rela-
tionship can be written as

2 1SWN SWPE m E m�                   (38)

In this section, it is also examined how the resistive 
switching energy varies with respect to n, the mem-
ristor power exponent, which is used to shape its win-
dow function. The reverse resistive switching energy 

normalized with respect to 
 2

2

dc

V on

V D
R m�

 and the forward 

resistive switching energy normalized with respect to 
 2

1

dc

V on

V D
R m�   as a function of the parameter n is shown in 

Figure 3. The resistive switching energy asymptotically 
approaches infinity when n approaches 1. For high val-
ues of n, Eq.s (35) and (36),

 2

1

  dc
SWP

V on

V DE
R m�

�                   (39)

and 

 2

2

 dc
SWN

V on

V DE
R m�

�                   (40)

For high values of n, Eq.s (40) and (41) become equal to 
Eq. (11), i.e., the Mutlu-Kumru model turns into the HP 
memristor model. 

In [18], for the reverse-biased memristor, the resistive 
switching time is given as

 

2 2

1
2 1 1

on off off
SWN

dc

R R Rn n
V K m n m n

�
�� �� � � �� �� �� � � �� �� � � �� �

(41)

In [18], for the forward-biased memristor, the resistive 
switching time is given as

 

1 12 1 1
on off off

dc dc

R R Rn n
V Km n V Km n
�� �� � � ��� �� � � �� �� � � �� �

SWP� =   (42)

From Eq.s (42) and (43), it can be seen that the switch-

ing time converges except for 
1  and 1
2

n n� � . These 

two cases have not been reported in [18]: 
- If m2 = m1, the resistive   switching times of the 

Mutlu-Kumru model for each polarity is found as 
the same.

- If n < 1, the resistive switching times of the Mutlu-
Kumru is negative, i.e., the Mutlu-Kumru is invalid 
for n < 1. 

R. K. Tan et al.; Informacije Midem, Vol. 54, No. 1(2024), 25 – 38



34

Also, for the Mutlu-Kumru model, the following rela-
tionship can be written as

 2 1SWN SWPm m� ��                   (43)

Considering Eq.s (38) and (43),

SWN SWP

SWN SWP

E E
� �

�                    (44)

(a)

(b)

Figure 3: The normalized resistive switching energy 
of the Mutlu-Kumru memristor model with respect to 
the parameter n for a) the reverse biased memristor 
(i(t) < 0) and b) the forward biased memristor (i(t) > 0).

For i(t) > 0, the resistive switching time of the Mutlu-
Kumru model can also be written as
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1 1
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dc dc
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  (45)

For i(t) > 0, using the resistive switching energy, the 
shaping factor of the Mutlu-Kumru model can be 
found as

 1
2

 1

     SWP V on

SWP V on dc

E R mn
E R m V D

�
�

�
�

                  (46)

By summitting (46) into Eq. (45), the relationship 
between the resistive switching energy and the re-
sistive switching time for the forward-biased mem-
ristor is found as

   (47)

For i(t) ≤ 0, the resistive switching time of the Mutlu-
Kumru model can also be written as

2 2
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(48)

For i(t) ≤ 0, using the resistive switching energy, the 
shaping factor of the Mutlu-Kumru model can be 
found as

  2
2

 2

SWN V on

SWN V on dc

E R mn
E R m V D

�
�

�
�

                 (49)

By summitting (49) into Eq. (48), the relationship be-
tween the resistive switching energy and the resistive 
switching time for the reverse-biased memristor,

(50)

5 Conclusion 

The switching energy of memristors or resistive mem-
ories is an important physical quantity, that needs to 
be calculated accurately for digital applications. In this 
study, first, the resistive switching energy formula for 
the memristor models is derived. Then, the solutions 
of the definite integrals of the resistive switching en-
ergy of the several well-known memristor models with 
nonlinear dopant drift speed are given using the Wolf-
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ram-Alpha integral calculator. In [18], it was shown that 
some of the memristor models examined could not do 
memristive switching in a finite time due to the bound-
ary lock and boundary unreachability problems, i.e., 
the switching times of these models are found to be 
infinite except the HP model and the proposed (Mut-
lu-Kumru) memristor model. In this study, it has been 
shown that the memristor models with the boundary 
lock and boundary unreachability problems examined 
in [18] also require infinite energy for the resistive 
switching to occur. This is not feasible since an infinite 
amount of energy cannot be supplied with a physical 
power source and the calculated switching energy also 
does not match the experimental results in the litera-
ture in which the resistive switching occurs with a finite 
energy [30, 51, 58]. Amongst the examined models, 
only the HP memristor and the Mutlu-Kumru model 
need a finite switching energy. The reason for the infi-
nite energy requirement of the memristor models with 
boundary unreachability problem has been found as 
the drift velocity of the doped region inside the mem-
ristor decreases to very low values   as it approaches the 
boundaries in these models and, therefore, the resistive 
switching or the total drifting time takes infinite time, 
which is regarded as a modern Zeno’s paradox in [56]. 
While the extending doped region approaches any 
of the boundaries under constant voltage, the doped 
region slows down so much that the switching time 
becomes infinite, and this results in an infinite energy 
consumption. It has also been shown that the models 
which have an infinite switching time [18] also have an 
infinite switching energy.

The memristor models well-known and commonly 
used in the literature are not able to do the resistive 
switching for whatever the switching voltage is. Any 
memristor model with this problem is not physically 
correct. Because, according to experimental studies, 
the ionic memristors can switch in both directions 
under a constant voltage and their switching energy 
increases with increasing voltage. If these memristor 
models’ switching is examined with programs such as 
Spice, LTspice, and Simulink [15-33] it looks like these 
memristor models can do resistive switching in a finite 
time and with finite switching energy according to the 
simulation results. This is because the numerical meth-
ods utilized in the simulation of the resistive switching 
results in an error. Upon analyzing the switching be-
havior of these memristors using numerical methods, 
it appears that the doped region within the memristor 
can reach either of the boundaries, assuming it moves 
at the average speed calculated in the previous time. 
However, [18] demonstrates that this is not valid. The 
discrete nature of numerical methods like Euler or 
Range-Kutta makes it impossible to accurately cal-
culate the deceleration of the doped region when it 

approaches any of the memristor boundaries when a 
memristor model with boundary unreachability prob-
lem is used.

In this study, the effect of memristor polarity on the re-
sistive switching energy was also examined, and it has 
been demonstrated that the switching energy integral 
diverges for both polarities in the memristor models 
examined except the HP and the Mutlu-Kumru mem-
ristor models. The results show that the memristor 
models that require infinite switching energy are not 
physical models despite being numerically simulatable, 
and, therefore, better memristor models, whose not 
only resistive switching time but also resistive switch-
ing energy integrals converge, are needed. In [18] to 
solve this problem, a new memristor model with a fi-
nite switching time has been proposed. In this study, it 
is also demonstrated that the Mutlu-Kumru memristor 
model does the resistive switching with a finite amount 
of energy under a DC voltage for each polarity.

The Mutlu-Kumru memristor model’s switching energy 
is also examined parametrically. It has been shown that 
for high n values, the switching energy of the Mutlu-
Kumru model asymptotically approaches that of the 
HP memristor.  For the Mutlu-Kumru memristor model, 
it has been shown that its switching time energy is a 
nonlinear function of its resistive switching energy.

A memristor model must have the three fingerprints 
of a memristor as explained in [57]. Experimental re-
sults such as the ones given in [30, 51, 58] show that a 
memristor must switch in a finite time but the models 
examined in [18] and this study except the HP and the 
Mutlu-Kumru models analytically cannot do resistive 
switching with a finite energy in a finite time. Therefore, 
in [18], it is suggested that if a new memristor model 
is proposed in the literature, its switching time must 
be a finite value and the convergence of the memris-
tor switching time integral should also be satisfied as 
an additional criterion besides having the three finger-
prints of the memristor. In our opinion, also, the resis-
tive switching energy of a memristor must also be finite 
or its switching energy integral should also converge 
to a finite value. Only the memristor models satisfying 
with the criterion given here and in [18] can be used 
to build memristor-based digital circuits and memories 
more accurately in the future.
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