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Abstract: Network slicing (NS) divides the physical network into many logical networks in order to support the variety of new 
applications with higher performance and flexibility needs. As a result of these applications, a massive amount of data has been 
generated with a huge number of mobile phones. Due to this, NS performance has been greatly impacted and extreme challenges 
have been created. To efficiently handle the challenges, this paper proposes a novel Optimal Network slice Classification Using 
Deep learning (ONE-CLOUD) technique, which integrates the Coati Optimization Algorithm (COA), GhostNet, and Gated Dilated 
Convolutional Neural Network (CNN). COA optimizes features such as user device type, packet loss ratio, and delay rate, employing 
GhostNet model, and Gated Dilated CNN for network slice classification. The proposed method classifies network slices into enhanced 
Mobile BroadBand (eMBB), Ultra-Reliable and Low-Latency Communications (URLLC), and massive Machine-Type Communications 
(mMTC). The effectiveness of the suggested approach has been evaluated using the 5G-SliciNdd dataset, utilizing evaluation criteria 
like accuracy, precision, recall, sensitivity, specificity, throughput, and reduced latency. The overall accuracy of the proposed method is 
5.78%, 2.78% and 4.70% higher than the existing DQN-E2E, DRL, and AAA techniques respectively.

Keywords: Network Slicing; Deep learning; GhostNet; Gated Dilated CNN; Coati Optimization.

Coatijevo optimizirano hibridno nevronsko omrežje 
za učinkovito rezanje omrežja v omrežju petih 
generacij
Izvleček: Razrez omrežja (NS) razdeli fizično omrežje na več logičnih omrežij, da bi podprl različne nove aplikacije z večjo zmogljivostjo 
in prilagodljivostjo. Zaradi teh aplikacij se je z velikim številom mobilnih telefonov ustvarila ogromna količina podatkov. To je močno 
vplivalo na zmogljivost omrežja NS in povzročilo izjemne izzive. Za učinkovito obvladovanje teh izzivov članek predlaga novo tehniko 
optimalne klasifikacije omrežnih rezin z uporabo globokega učenja (ONE-CLOUD), ki združuje algoritem COA (Coati Optimization 
Algorithm), GhostNet in gated dilated konvolucijsko nevronsko mrežo (CNN). COA optimizira lastnosti, kot so vrsta uporabniške 
naprave, stopnja izgube paketov in stopnja zamude, pri čemer uporablja model GhostNet in Gated Dilated CNN za klasifikacijo 
omrežnih rezin. Predlagana metoda razvršča omrežne rezine v izboljšano mobilno širokopasovno omrežje (eMBB), izjemno zanesljive 
komunikacije z nizko zakasnitvijo (URLLC) in množične komunikacije strojnega tipa (mMTC). Učinkovitost predlaganega pristopa je bila 
ocenjena z uporabo podatkovne zbirke 5G-SliciNdd, pri čemer so bila uporabljena merila za ocenjevanje, kot so natančnost, točnost, 
priklic, občutljivost, specifičnost, prepustnost in zmanjšana zakasnitev. Skupna natančnost predlagane metode je za 5,78 %, 2,78 % in 
4,70 % višja od obstoječih tehnik DQN-E2E, DRL in AAA.

Ključne besede: Rezanje omrežja; globoko učenje; GhostNet; Gated Dilated CNN; Coati optimizacija.
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1 Introduction

Network slicing is an innovative architype for building 
system services that 5G networks have promoted with 
the growth of Software-Defined Networking (SDN) and 
Network Function Virtualization (NFV) [1]. 5G systems 
face immense demand due to mobile tech growth 
and app diversity. They must bolster Quality of Ser-
vice (QoS) for multiple sectors like virtual reality, aug-
mented reality, and remote healthcare, necessitating 
unprecedented advancement [2,3]. 

In 5G systems, NS defines autonomous, cohesive net-
works composed of a blend of dedicated and commu-
nal resource instances, including system equipment, 
radio spectrum, and VNF [4]. 5G system is designed to 
be a versatile, multi-service infrastructure that accom-
modates a diverse range of services, including eMBB, 
URLLC, and mMTC [5]. One of the utilization cases for 
future 5G, low-inactivity correspondence, is supposed 
to be upheld by MEC, a basic 5G improvement inno-
vation [6]. It brings far-off systems administration, 
storage, and public distributed computing capacities 
nearer to the edge of the organization [7].

A network slice contains different organization compo-
nents, for example, the terminal, access organization, 
center organization, and transport organization, which 
can be used by numerous administrators [8]. Unique in 
relation to other network slices, a network slice has de-
voted or potentially shared assets [9]. Portable network 
slice administrators will deliver diverse network slices 
bundled into one product for business clients with 
varying requirements, including a single network slice 
type catering to different verticals [10,11]. 

To effectively establish and manage network slices that 
meet QoS requirements amid changing conditions, 
handling extensive data swiftly proves challenging for 
humans [12,13]. The automatic method for managing 
network slices is critical because manual slice assign-
ment is inefficient when dealing with the vast amount 
of data and dynamic conditions in 5G networks. Au-
tomatic classification enhances resource allocation 
by quickly adjusting to changing user demands and 
network conditions, thereby ensuring optimal perfor-
mance without the delay and potential human error 
associated with custom manual assignments. It also 
supports the scalability required to manage the com-
plexity and diversity of modern 5G applications, such 
as VR, AR, and remote healthcare . To address this is-
sue a novel Optimal Network slice Classification Using 
Deep learning (ONE-CLOUD) technique, has been sug-
gested. The main contributions are as follows: 
- Packet loss ratio, delay rate, speed, device type, 

slice type, user bandwidth, and other attributes 

are gathered initially from the various users or de-
vices in the 5G network.

- After collecting these features, Coati Optimiza-
tion Algorithm (COA) is employed to select fea-
tures from the collected attributes. Subsequently, 
the selected features are output in the form of 
optimal weighted features.

- The NS prediction is achieved by hybridizing 
GhostNet and Gated Dilated CNN through the 
AND operation, using the newly extracted weight 
optimized features. The output categorizes the 
network slices into three types: eMBB, mMTC, and 
URLLC.

The remainder of the research is described as follows: 
Section II examines the study using the literature as a 
guide. Section III thoroughly explains the suggested 
system. Section IV shows the result and discussion, 
whereas Section V shows the conclusion.

2 Literature survey

Several studies have utilized several techniques to NS 
in recent years. The following section covers a few of 
the current evaluation approaches along with their dis-
advantages are as follows:

In 2020, Li, T., et al., [14] suggested an E2E system slicing 
source distribution system that operates in multi-slice 
and multi-service scenarios, based on Deep Q-Networks 
(DQN). This system dynamically allocates resources to 
optimize by considering both the fundamental system 
slices and the radio access network slices. To the access 
side’s ideal allocation approach, the typical access rate 
is enlarged by 9% for slices with delay limitations and 
by 5% for slices with rate constraints. In 2021, He, Y., 
et al., [15] recommended a multi-chain 5G NS facility 
value computation model to ascertain the characteris-
tics of the NS service quality. The Cosi protocol features 
lower traffic consumption and a steady calculation cost 
as compared to other protocols. Ultimately, the practi-
cality and effectiveness of the multi-chain 5G NS facil-
ity value computation architecture is demonstrated by 
security analysis and experimental outcomes.

In 2022, Suh, K., et al., [16] suggested a deep reinforce-
ment learning (DRL)-based NS method to determine 
the source provision strategy that maximizes long-
term amount in B5G systems while meeting QoS stand-
ards. The suggested method is shown to be efficient 
in addressing the coexistence of use cases in B5G en-
vironments and optimizing long-term throughput by 
numerical findings. In 2023, Dangi, R. and Lalwani, P., 
[17] suggested a successful hybrid learning algorithm-
based network-slicing technique to enhance QoS and 
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maximize NS, the results produced by the suggested 
model are contrasted with those of current deep learn-
ing, machine learning, and optimization methods. It 
proves that the suggested model performed better 
than the others and identified the right network slices 
to provide top-notch services.

In 2023, Hu, Y., et al., [18] recommended neural network-
based carrying technique. This paper provides a power 
5G slicing service carrying mechanism based on neural 
networks. Through simulation verification, proved that 
the properties of electric power services are retrieved, 
classified, matched, and compliant with the 5G power 
NS. In 2023, Botez, R., et al., [19] suggested a modified 
A* algorithm Targeting services with low or extremely 
low latency requirements, it offers a better way to NS 
in 5G backhaul networks. According to experimental 
data, the suggested technique improves processing 
time by an order of magnitude. These outcomes show 
how well our method works in 5G backhaul networks 
to achieve URLLC. In 2024, Gomes, R., et al., [20] sug-
gested the Artificial Algae Algorithm (AAA) as a 5G-
specific NS solution for the VNE problem. The runtime 
presentation of AAA is independent of the number of 
simulated nodes this results in execution times that are 

up to ten times faster than DE and PSO when taking 
into account 30 nodes. The suggested method using 
AAA demonstrated an improvement of more than 60% 
in an implementation time that was ten epochs faster.

The aforementioned techniques have a number of is-
sues with NS, including low accuracy, high Latency. To 
overcome these challenges a novel ONE-CLOUD tech-
nique has been proposed and discussed in next sec-
tion.

3 Optimal network slice classification 
using deep learning 

In this section, a novel Optimal Network slice Classifica-
tion Using Deep learning (ONE-CLOUD) technique has 
been proposed to optimize resource utilization, and 
enhance the flexibility and efficiency of 5G and beyond 
networks. Initially, various attributes like bandwidth, de-
vice type, speed, slice type, packet loss ratio, and delay 
rate are gathered from different devices or users in the 
5G network. These features undergo COA for selection, 
resulting in optimal weighted features. GhostNet is hy-

Figure 1: Overall workflow of Proposed ONE-CLOUD Method
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bridized with Gated Dilated CNN using the AND op-
eration to predict NS, leveraging the newly optimized 
features. The output classifies network slices into three 
types: eMBB, mMTC, and URLLC. The overall proposed 
ONE-CLOUD’s workflow is depicted in Figure 1.

3.1 Feature extraction

In NS, feature extraction is the process of locating and 
obtaining pertinent data or attributes from the collec-
tion of features linked to each slice. 

3.1.1 Feature Extraction
The COA [21] is a recently developed bioinspired opti-
mization technique influenced by the natural behavior 
of coatis, presents a novel approach for feature extrac-
tion in NS. COA is based on the essential idea of imitating 
two important coatis’ behaviors: (i) chasing and fighting 
iguanas and (ii) running away from predators. The COA 
is considered the most suitable technique for network 
slicing feature extraction since its bioinspired mecha-
nisms mimic coatis’ hunting and evasion behaviours. 
These behaviours enable more effective exploration and 
exploitation of the solution space. The COA is especially 
well-suited for challenges like network slicing, which de-
mands for dynamic adaptability to changing conditions 
and limits, as it has proven to perform well in balancing 
global search capability and local search precision. When 
compared to other optimization algorithms like particle 
Swarm Optimization (PSO) and Cuckoo Search Optimi-
zation (CSO), COA’s dual strategy allows for a more thor-
ough exploration of potential solutions and reduces the 
probability of getting trapped in local optima. This COA 
behaviour facilitates more efficient resource distribution 
in complicated 5G scenarios. Performance measures like 
latency and throughput are improved by COA’s ability to 
manage high-dimensional features such as device type, 
packet loss, and delay rates in network slicing of 5G. Be-
cause the mentioned algorithms might not provide the 
same balance between exploration and exploitation 
needed for network slice optimization, this helps in our 
decision to choose the COA algorithm. The coatis’s origi-
nal location in the hunt space is determined at random 
using Eqn. (1) at the initial stage of the COA implementa-
tion.

 (1)

where m is the amount of coatis, n is the amount of 
choice variables, k is a chance actual amount in the 

interlude 0,1, Zj is the location of the jth coati in hunt 
space, and LWi and UPi are the inferior and superior 
bounds of the jth choice variable, correspondingly. The 
subsequent medium Z, known as the population ma-
trix, is used to numerically depict the inhabitants in the 
COA which is given in Eqn (2)

 (2)

Two of coatis’s natural activities are modeled in order 
to update coatis’s position (feature solutions) in the 
COA. Among these behaviors are: i) The method used 
by coatis to attack iguanas and ii) The coatis’ method of 
avoiding predators. Consequently, there are two steps 
to the updating of the COA population.

Phase 1: Strategy for hunting and attacking iguanas 
(exploration phase)

The first phase updates the coati population by simu-
lating their iguana-attacking strategy. Some climb 
trees to scare iguanas, while others wait below. Half 
climb trees, and the rest wait for the iguana to drop. 
The mathematical simulation of the climbing coatis’ lo-
cation is expressed by Eqn. (3).

  (3)

Following its release to the ground, the iguana is placed 
arbitrarily throughout the search area. Eqn (4), (5).is 
used to approximate the random position that causes 
coatis on the pounded to transfer in the hunt space. 

 � �: , 1, 2,....,  C c
i i i iIg Ig LW k UP LW i n� � � � �  (4)

If each coati’s new position increases the value of the 
objective function, it is permitted for the update pro-
cess; if not, the coati stays in its previous place. Eqn 
(6) determines the simulated values of j = 1, 2, .... m, to 
which this update condition is applicable.

 � �
� �
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where k is an arbitrary real number in the range [0, 1], 

Jg stands for the iguana’s location in the hunt area, 1po
jZ  

is the original location estimated for the jth coati, 1
.

po
j iz  is 

its ith dimension, and 1po
jE  is its neutral role worth. Jgi is 

its ith measurement; Figure 2 shows the coati optimiza-
tion algorithm’s initial phase.

Figure 2: Coati Optimization Algorithm’s initial phase: 
(a) Half of the coatis attacking the tree-dwelling iguana, 
and (b) the remaining coatis hunting the fallen iguana

Phase 2: The procedure of running away from an as-
sailant (the exploitation stage)

The second phase updates coatis’ search space position 
by modeling their natural behavior when facing preda-
tors. When attacked, coatis escape, strategically mov-
ing to a safe spot near their current position, showcas-
ing COA’s effective local search exploitation ability. To 
replicate this behavior, a random position is generated 
near each coati’s location using Eqns. (7) and (8).

, ,  1, 2, ,   loc loci i
i j

LW UPLW UP whered D
d d

� � � �  (7)

� � � �� �2 2
. .: 1 2  po po loc loc loc

j j i j i i i iZ z z k LW k UP LW� � � � � � �  (8)

The recently computed position is deemed suitable if 
it enhances the objective function value, a condition 
simulated by employing Eqn. (9).

2 2,  
,  

po po
j j j

j
j

Z E E
z

z else
� ��� �
��

    (9)

Here, 2po
jZ   is the original location determined for the ith 

coati using another stage of COA; 1
.

po
j iz  is its ith dimen-

sion; 2po
jE  is its impartial role value; k is a chance amount 

within the break [0, 1]; COA to help categorise the weight 
function, and optimal weight features are the output 

from the feature extraction process. The description of 
various features used in NS is given in Table 1.

Table 1: Overall summary of various features used in 
network slicing

 Features Feature Description
User device type Properties describe characters and 

parts of a device
Packet loss rate  Percentage of packet vanish with 

respect to packet transmitted
Bandwidth Fastest transfer of information rate 

possible with an internet connec-
tion

Delay rate The time frame before an event 
occurs

Speed Dimensions of location variation

3.2 Network slicing with the commitment of ghostnet 
and gated dilated CNN

Network slicing employs GhostNet and Gated Dilated 
CNN for efficient classification, enhancing performance 
and optimizing resource allocation in diverse network 
environments. The proposed technique combines the 
GhostNet and Gated Dilated CNN in network slicing, 
which addresses the challenges in classification, espe-
cially in handling large and distinct data from 5G net-
work slices. 

3.2.1 GhostNet Model
The fundamental unit of GhostNet is a stack of Ghost 
bottlenecks, of which the Ghost modules are the 
building hunks. The primary layer is a standard con-
volutional layer with 16 filters, followed by a series of 
Ghost bottlenecks with increasingly more channels. 
Using a convolutional layer and global average pool-
ing, the feature maps are ultimately transformed into 
a feature vector for the final classification. The Optimal 
weighted features are given as input to the GhostNet. It 
is suitable for classifying network slices where resource 
constraints are common and its input is an optimal 
weighted feature. The convolution operation in a Ghost 
Module is given in Eqn (10):

i
i j jj I
q v y

�
��                     (10)

Here p be the input to the Ghost Module, and q be the 
output, i indexes the output channels, Sj is the set of 
indices corresponding to the output channels, Vj is the 
weight associated with input channel yi and yi is the in-
put feature map. The Ghost Module introduces a ghost 
set Gi of randomly selected indices from the set Ii, and 
the convolution operation is given in Eqn (11)
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i

i j ji G
q v p

�
��                   (11)

The ghost set Gi is dynamically sampled during each 
forward pass, leading to parameter-efficient training. 

With reference to intrinsic feature maps, b v nX ′× ×′′∈  

can be generated by Eqn (12), e r r nj × × ×′ò  is the con-
volutional filters. Nevertheless, as Eqn (13) illustrates, 
partial convolutional operations are performed, and 
the remaining feature maps are produced via a linear 
operation.

 *  X Y j b� � ��                    (12)

 � �'
, , , 1, , , 1, , , j i j i j jX X n i h�� � � � � �             (13)

Where, '
jX  is the j-th inherent feature map in X ′, ,j iθ  

the direct process for  generating the i-th ghost feature 

map ,j iX . The outputs from all the ghost branches are 
aggregated to obtain the final output Q which is given 
in Eqn (14).

1

M
jj

Q Z
�

��                     (14)

Where,  is the total number of ghost breaches. As an 
improvement, we used the AND operation to opti-
mize the weight function after receiving the output Q 
from GhostNet. GhostNet model is highly efficient in 
extracting features from high-dimensional data with 
fewer parameters, making it suitable for real-time and 
resource-constrained environments such as 5G net-
works. GhostNet’s ability to generate additional fea-
ture maps through simple linear transformations helps 
in reducing the computational burden while retain-
ing critical information for classifying network slices 
(eMBB, mMTC, URLLC). Utilizing fewer convolutional 
operations ensures that the model is lightweight, mak-
ing it ideal for environments with limited computation-
al power.

3.2.2 Gated dilated CNN model
Gated Dilated Convolutional Neural Networks are a 
type of DL architecture that combines the concepts of 
dilated convolutions and gated units to capture long-
range dependencies in input data. Dilated convolution 
that introduces gaps between the weights. Eqn (15) 
provides the expression for the dilated convolution op-
eration on a 1D sequence.

 � �� � � � � �1
  S

s
a f j a j dr s f s

�
� � � � ��                  (15)

where  indicates the convolution process,  is the dila-
tion rate,   is the filter size,   is the filter or kernal, and  

is the input sequence. Two gates are used in the gat-
ing mechanism: the reset gate (rg) and the update gate 
(ug). Eqn (16) & (17) is used to calculate the update gate 
(z) and reset gate (r) using sigmoid activation functions.

� �� �1,ug sug V a h� �� �                    (16)

� �� �1,rg srg V a h� �� �                   (17)

The Contender concealed state ( is then figured using 
reset gate, which is given in the Eqn (18). Finally, the ac-
tual concealed state ( is figured Using the update gate 
to combine the candidate hidden state with the cur-
rent hidden state, which is given in Eqn (19)

� � �� �1tan ,  s h sh h V rg h a�� � �                   (18)

 � � 11s s sh ug h ug h�� � �� �                  (19)

Here, Vug  , Vrg  , and Vh are weight matrices,  is the sig-
moid activation function, ⊙ indicates multiplication of 
elements, and tanh is the hyperbolic tangent activation 
function. If L describes the output of the last layer be-
fore the softmax activation, the final output (Op) can be 
computed as in Eqn (20) 

 � � pO softmax L�                    (20)

Finally, the output of two models is merged by AND 
operation and classifies the NS types into 3 classes 
such as eMBB, mMTC and URLLC. The Gated Dilated 
CNN is integrated to capture long-range dependen-
cies in the data. 5G networks often generate complex 
temporal sequences, and traditional CNNs may fail to 
exploit these patterns fully. The dilated convolutions 
in the Gated Dilated CNN allow the model to handle 
long-range dependencies efficiently by expanding 
the receptive field without increasing the number of 
parameters. This mechanism is particularly effective in 
classifying diverse network slices, as it captures both 
short-term and long-term dependencies in the data, 
which is crucial for optimizing network performance 
in real time. By combining GhostNet and Gated Dilated 
CNN through the AND operation, the proposed ONE-
CLOUD technique ensures optimal feature extraction 
and classification, addressing both the computational 
efficiency and the complexity of network slicing clas-
sification.

4 Results and discussion

The proposed ONE-CLOUD technique’s simulation 
outcomes are obtainable in this section to assess the 
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efficiency of the proposed technique. Performance 
scrutiny and execution of the suggested 5G NS were 
conducted in MATLAB. 

Figure 3: Overall Performance comparison in terms of 
accuracy, precision, and recall

The effectiveness of the technique was assessed us-
ing the 5G-SliciNdd dataset. The dataset used in this 
work has been split into training, validation, and test-
ing sets, which has been divided into 80%, 10%, and 
10% of the entire dataset. The dataset split has been 
done randomly which ensures that each class is repre-
sented proportionally in each subset to prevent class 
imbalance. The training set has been used to train the 
network, validation set has been used to fine tune the 
hyperparameters of the network, and the test set is 
used to test the network and its performance in NS. 
With this splitting, we can ensure that the network can 
reduce overfitting of training data which results in gen-
eralization. Additionally, the separate test set will help 
in evaluating the generalizability and robustness of 
proposed ONE-CLOUD technique. This ensures that the 
results state the actual performance of the network on 
test data.

The proposed ONE-CLOUD model’s effectiveness is 
contrasted with DQN-E2E [14], DRL [16], and AAA [20] 
in terms F1-score, accuracy, sensitivity, specificity, 
precision, throughput and latency. In Figure 3, a com-
prehensive evaluation of overall performance is pre-
sented, comparing accuracy, precision, and recall of NS 
against existing DQN-E2E, DRL, and AAA techniques. 
The assessment provides insights into how effectively 
the proposed ONE-CLOUD NS approach performs in 
comparison to established methods. This comparison 
aids in gauging the efficacy of NS in comparison to ex-
isting techniques.

Figures 4(a) and 4(b) show the training and test data 
sets, as well as the accuracy and loss curves. The Ac-
curacy Curve in Subfigure (a) shows how the model’s 
correctness upsurges on both the training and authen-
tication sets during the course of training epochs. Both 

training and validation losses tend to be downward, ac-
cording to the Loss Curve in Subfigure (b). 

Figure 5: Comparison in terms of accuracy

Figure 5 illustrates a focused comparison in terms of 
accuracy with 100 epochs between the proposed ONE-
CLOUD technique and existing DQN-E2E, DRL, and AAA 
methods. 

The graph offers a visual representation of how well 
the new approach performs in terms of correctness 

Figure 4: (a) Accuracy Curve; (b) Loss Curve

A. D. S. Sindhu et al.; Informacije Midem, Vol. 55, No. 2(2025), 77 – 86
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compared to established techniques. Comparing the 
accuracy of the suggested ONE-CLOUD method to the 
current DQN-E2E, DRL, and AAA procedures, it is 5.78%, 
2.78%, and 4.70% higher.

In Figure 6, the slice receiving ratio is presented along-
side variable slice traffic loads, linking the presentation 
of the proposed ONE-CLOUD technique with existing 
DQN-E2E, DRL, and AAA methods. This figure allows 
for an assessment of how well the proposed method 
adapts to varying levels of network demand compared 
to established techniques. 

Figure 7: Revenue-to-cost ratio with variable slice traf-
fic load

Figure 7 illustrates the revenue-to-cost ratio in rela-
tion to mutable share traffic loads for both the existing 
DQN-E2E, DRL, and AAA methods and the proposed 
ONE-CLOUD technique for NS. A higher revenue-to-
cost ratio indicates improved cost-effectiveness, high-
lighting the potential benefits of implementing the 
proposed NS method in comparison to the conven-
tional system

Figure 8 presents a comparative analysis of sensitivity 
and specificity between the existing system and the 
proposed ONE-CLOUD method for NS. The specificity 
and sensitivity of the proposed ONE-CLOUD method 
are 3.90%, 9.25%, 12.44% and 5.02%, 4.18%, 6.27% 
greater than the existing AAA, DRL and DQN-E2E tech-
niques respectively.

Figure 8: Comparison in terms of sensitivity and speci-
ficity

Figure 9: Comparison in terms of throughput

Figure 9 presents a comparison of throughput between 
the existing AAA, DRL and DQN-E2E techniques and the 
proposed ONE-CLOUD method for NS. This graph ena-
bles an assessment of how the proposed NS method 
performs in terms of data transmission efficacy associ-
ated to the existing system, providing valuable insights 
into the potential improvements in throughput offered 
by the proposed ONE-CLOUD approach.

Figure 10 illustrates a latency comparison between the 
proposed ONE-CLOUD method and existing AAA, DRL 
and DQN-E2E techniques. The proposed method dem-

Figure 6: Slice acceptance ratio with variable slice traf-
fic load

Figure 10: Comparison in terms of latency
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onstrates superior latency performance compared to 
current methods. This comparison offers valued visions 
into the effectiveness and efficiency of the proposed 
NS approach, showcasing its potential to minimize 
communication delays. 

5 Conclusion

In this paper, a novel Optimal NEtwork slice CLassifica-
tiOn Using Deep learning (ONE-CLOUD) technique has 
been proposed to optimize resource utilization, and 
enhance the flexibility and efficiency of 5G and beyond 
networks. The COA-based feature extraction optimizes 
device attributes. These features enhance GhostNet 
and Gated Dilated CNN models, combined via AND op-
eration, boosting accuracy in classifying eMBB, mMTC, 
and URLLC network slices. The evaluation of the pro-
posed ONE-CLOUD method, conducted using the 5G-
SliciNdd dataset. The proposed ONE-CLOUD method 
outperforms existing techniques, in terms of precision, 
accuracy, latency, sensitivity, specificity, throughput, 
and recall. The overall accuracy of the proposed ONE-
CLOUD method is 5.78%, 2.78% and 4.70% higher 
than the existing DQN-E2E, DRL, and AAA techniques 
respectively. Future work could explore the scalability 
and applicability of the proposed technique in large-
scale network environments, as well as its adaptability 
to emerging communication technologies beyond the 
scope of 5G. 
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