
271

Review scientific paper

 MIDEM Society

Journal of Microelectronics,
Electronic Components and Materials
Vol. 54, No. 4(2024), 271 – 281

https://doi.org/10.33180/InfMIDEM2024.404

How to cite:
Á. Bűrmen et al., “Free Software Support for Compact Modelling with Verilog-A", Inf. Midem-J. Microelectron. Electron. Compon. Mater.,
Vol. 54, No. 4(2024), pp. 271–281

Free Software Support for Compact Modelling with
Verilog-A
Árpád Bűrmen, Tadej Tuma, Iztok Fajfar, Janez Puhan, Žiga Rojec, Matevž Kunaver, Sašo Tomažič

University of Ljubljana, Faculty of Electrical Engineering

Abstract: Verilog-A is the analog subset of Verilog-AMS - a hardware description language for analog and mixed-signal systems.
Verilog-A is commonly used for the distribution of compact models of semiconductor devices. for such models to be usable a
Verilog-A compiler is required. The compiler converts the model equations into a form that can be used by the simulator. Such
compilers have been supplied with commercial simulators for many years now. Free software alternatives are much more scarce and
limited in the features they offer. The paper gives an overview of Verilog-A, Free software Verilog-A compilers, and Free software/Open
source simulators that can simulate compact models defined in Verilog-A. Advantages and disadvantages of individual compilers and
simulators are highlighted.

Keywords: analog circuits, compact models, Verilog-A, compiler, simulation

Odprtokodna programska oprema za uporabo
kompaktnih modelov v jeziku Verilog-A
Izvleček: Verilog-AMS je opisni jezik za mešana analogno-digitalna vezja. Verilog-A je njegov podsklop, ki je namenjen opisu analognih
vezij. Pogosto ga uporabljamo za distribucijo kompaktnih modelov polprevodniških elementov. Da bi take modele lahko uporabili v
simulatorju vezij, potrebujemo prevajalnik za Verilog-A. Ta pretvori model v obliko, ki jo simulator lahko uporabi pri izračunu odziva
vezja. Prevajalniki za Verilog-A so že dlje časa sestavni del tržnih programskih paketov za simulacijo vezij. Odprtokodnih alternativ
je manj in podpirajo samo del specifikacije jezika. Članek poda pregled odprtokodnih prevajalnikov in simulatorjev s podporo za
kompaktne medele opisane v jeziku Verilog-A s poudarkom na prednostih in slabostih posameznih prevajalnikov in simulatorjev.

Ključne besede: analogna vezja, kompaktni modeli, Verilog-A, prevajalnik, simulacija

* Corresponding Author’s e-mail: arpad.buermen@fe.uni-lj.si

1 History of Verilog-A

Verilog-A is a hardware description language (HDL) for
analog circuits. It is based on Verilog, which by itself is
a HDL for digital circuits. The history of Verilog [1] dates
back to 1980s when Gateway Design Automation in-
troduced the language. In 1990 the language was ac-
quired by Cadence Design Systems. The language was
transferred to public domain where it was supported
and extended by Open Verilog International (OVI). In
2000 Accellera Systems Initiative was founded from the
merger between OVI and VHDL International and has
been managing the language to date.

Verilog has been standardised by IEEE as standards
1364-1995 (Verilog-95) [2], 1364-2001 (Verilog-2001)
[3], and 1364-2005 (Verilog-2005) [4]. Since then Ver-
ilog has evolved into SystemVerilog which offers new
design (data lifetime specification, more advanced
data types, new procedural blocks, and interfaces) and
verification features (new data types, object-oriented
programming model, generation of constrained ran-
dom values, assertions, coverage, and synchronisation
primitives). SystemVerilog has been standardised by
IEEE as standards 1800-2005 (superset of Verilog-2005)
[5] and 1800-2009 (SystemVerilog 2009) [6] with fur-

272

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

ther updates in 2012 (1800-2012) [7], 2017 (1800-2017)
[8], and 2023 (1800-2023) [9].

In parallel to the evolution of Verilog a new HDL for
analog/mixed signal systems was being developed.
Verilog-A, which is a HDL for purely analog systems,
was released in 1996 by OVI [10]. Its syntax was based
on the syntax of Verilog, but the language constructs
were designed for describing analog systems in terms
of ordinary differential equations (ODE). The language
was primarily created to standardize the Spectre simu-
lator’s behavioral language in times when it was facing
competition from VHDL that was getting analog capa-
bilities via incorporating analog HDL languages like
MAST [13]. Verilog-A was developed with a more ad-
vanced language in mind - one that would be capable
of describing analog, as well as, mixed-mode systems.
The language was released in 1998 and was deemed
Verilog-AMS (version 1.3). In the year 2000 version 2.0
of Verilog-AMS was released. Since then Verilog-AMS
has beed updated in 2009 (version 2.3.1), 2014 (version
2.4.0) [11], and 2023 (Verilog-AMS 2023) [12]. Currently
work is underway to merge Verilog-AMS with System-
Verilog to produce SystemVerilog-AMS [14]. Verilog-A
and Verilog-AMS did not become IEEE standards and
have remained under the oversight of Accellera. Mod-
ern Verilog-A is the analog subset of Verilog-AMS.

Free software [15] alternatives for Verilog-A are impor-
tant, among other things, because they make Verilog-A
and the compact models defined in Verilog-A available
to a wide audience without having to pay the high
cost of commercial tools. Free software means that
the users have the freedom to run, copy, distribute,
study, change and improve the software. It is usually
licensed under the GNU General Public License (GPL)
or some other compatible license. Free software must
not be confused with free software (lowercase). The
latter means only that the price of the software is zero
and does not give its users the same freedom as Free
software. All Free software is Open source [16], but
every Open source software is not Free software. Open
source licenses can be more restrictive that GPL. Free
software has great impact. As an example, consider the
importance, usefulness, and implications of the GNU C
Compiler [17] or Free software for Verilog-95 simulation
(i.e. Verilator, [18]).

2 Using Verilog-A for compact
modelling

Verilog-A is commonly used for the distribution of
compact models (CM) of semiconductor devices. Com-
pact models provide the equations linking terminal

currents to terminal voltages of circuit components
like MOSFETs, bipolar transistors, diodes, etc. The usual
approach to formulating circuit equations is modified
nodal analysis (MNA) [19] where as many as possible
branch currents are explicitly expressed and substitut-
ed into Kichoff current law equations.

In every circuit one Kirchoff current law equation (KCL)
can be constructed for each node, with the exception
of the reference node. Each node is associated with a
nodal voltage (potential) which becomes an unknown
in the system of equations. An exception to this is the
reference node whose nodal voltage is assumed to
be zero. Branch currents that cannot be explicitly ex-
pressed are kept as unknowns in the system of equa-
tions. In circuit simulation such branch currents are
treated as the associated quantities of so-called flow
nodes. For each flow node an equation has to be added
to the system. This equation is obtained from the con-
stitutive relation of the element where the aforemen-
tioned branch resides and has a similar role as the KCL
equation of an ordinary node. Flow nodes are typically
used for modelling voltage sources and inductors.

Equations of a model are formulated as ordinary differ-
ential equations (ODE). Let us assume a circuit element
has n nodes (ordinary and flow nodes) of which the
first m ≤ n nodes are terminals. All terminals are as-
sumed to be ordinary nodes. The associated quantities
of the nodes are considered to be the independent
variables and their values are listed in vector x. Let y
denote the vector of terminal currents where a current
is assumed to be positive if it flows into the correspond-
ing terminal. Components of y that correspond flow
nodes or internal nodes are assumed to be 0.

Let g(x) and q(x) denote two vector valued (nonlinear)
functions of independent variables. These two func-
tions represent the resistive and the reactive contribu-
tions to the equations associated with the aforemen-
tioned n nodes. For ordinary nodes the components of
g(x) and q(x) correspond to resistive currents flowing
from the nodes and charges accumulated at the nodes,
respectively. For flow nodes they correspond to volt-
ages and fluxes. The resistive currents are assumed to
be positive if they flow outward from a node. After a
Verilog-A compact model is compiled its equations are
formulated as

 � � � �d
dt

� �y g x q x (1)

As an example, let us consider a semiconductor diode
in Figure 1. The model has two terminals (A and C) and
one internal node (Ai). It comprises a linear resistor (RS)
that models the series resistance of a diode and a core

273

diode that models the nonlinear diode characteristic
and its charge storage. The noise generated by the di-
ode and its series resistance is modelled by noise sourc-
es with power spectral densities SR and SD. Vectors y and
x in equation (1) can be written as � �T0A Ci i�y
and � �TA C Aiv v v�x . The two nonlinear vector-
valued functions are

� �
� �
� �

� � � �

1

1

S A Ai

D Ai C

S Ai A D Ai C

R v v
i v v

R v v i v v

�

�

� ��
� �� � �� �
� �� � �� �

g x (2)

 � � � � � �0 T
D Ai C D Ai Cq v v q v v� �� � � �� �q x (3)

To simplify expressions let us neglect the diode’s junc-
tion capacitance and assume it exhibits only diffusion
capacitance. Then functions iD and qD can be written as

� � exp 1D S

T

ui u I
V

� �� �
� �� �� �� �� �� �

 (4)

� � expS
D

T T

I uq u
V V

�
� �

� � �
� �

 (5)

The power spectral densities of the two
noise sources are 4 /R SS kT R� and

� � � �2 /fA
D D Ai C f D Ai CS qi v v K i v v f� � � � . IS, τ, Kf , and

Af are diode parameters and VT is the thermal voltage
(kT/q). The Boltzmann constant, the absolute tempera-
ture, and the electron charge are denoted by k, T, and
q, respectively. The core diode noise source (SD) com-
prises a frequency-independent shot noise component
and a flicker noise component whose power spectral
density is inversely proportional to the frequency. The
Verilog-A code defining the diode model is

 ‘include “constants.vams”
 ‘include “disciplines.vams”
module diode(A,C);
 inout A, C;
 electrical A, C, AI;
 parameter real Is = 1e-14 from [0:inf];
 parameter real Rs = 0.1 from (0:inf];
 parameter real Tau = 1e-6 from [0:inf];
 parameter real Kf = 1e-12 from [0:inf];
 parameter real Af = 1 from (0:inf];
 real VT, id, qd, g;
 analog begin
 VT = ‘P_K*$temperature/‘P_Q;
 id = Is*(exp(V(AI, C)/VT)-1);
 g = Is/VT*exp(V(AI, C)/VT);
 qd = Tau*g;
 I(A, AI) <+ V(A, AI) / Rs;
 I(AI, C) <+ id + ddt(qd);
 I(A, AI) <+ white_noise(4*‘P_K*$temperature/
 Rs, “rs”);
 I(AI, C) <+ white_noise(2*‘P_Q*id, “id”);
 I(AI, C) <+ flicker_noise(Kf*pow(id, Af), 1, “flicker”);
 end
endmodule

Once all models formulate their equations along the
lines of (1) the system of equations describing a circuit
can easily be assembled. For each circuit element the
components of vector y corresponding to terminals are
simply added to the KCL equations of nodes to which
these terminals are connected. Rows of (1) that corre-
spond to internal nodes and complement the circuit’s
KCL equations as extra equations.

Verilog-A is capable of describing all aspects of a device
covered by a legacy SPICE3 model implemented in C.
There are several advantages in using Verilog- A. The
models are significantly shorter. This arises from two
facts. Writing a model in C can require many lines of
code for expressing concepts that are expressed with
a single line in Verilog-A. Secondly, Verilog-A compilers
automatically derive the expressions for the derivatives
of functions g and q with respect to components of
x. These expressions must be formulated manually in
SPICE3 models and can easily double the amount of C
code that needs to be written. Manual implementation
of derivatives is error prone. Incorrectly implemented
derivatives result in convergence problems during
simulation which can arise only under certain circum-
stances and are thus not easily detectable.

A C

SR SD

RS DI

iA iCAi

Figure 1: Model of a semiconductor diode. Noise
sources SD and SR are treated separately by Verilog-A.

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

274

Table 1 lists selected BSIM3, BSIM4 and BSIM-BULK
(BSIM6) models [20]. The number of parameters of
a model (p) is closely correlated with the size of the
model expressed as lines of code (l). It is evident that
SPICE3 models implemented in C are significantly more
verbose than models implemented in Verilog-A. Mod-
els that are implemented in Verilog-A since their in-
ception (BSIM6, BSIM-BULK) comprise roughly 6 times
fewer lines of code per parameter than SPICE3 models
implemented in C (BSIM3, BSIM4). Even models trans-
lated from a SPICE3 model (e.g. Cogenda BSIM4 4.8
[21]) comprise less than half the amount of code per
parameter compared to SPICE3 models.

Modern device models, like BSIM-BULK, BSIM-SOI, HI-
CUM, MEXTRAM, etc., are all released by their develop-
ers (mostly universities) in Verilog-A. Compact Model
Coalition (CMC) [22] performs quality checks and veri-
fies if the released models comply with standards.

3 Interfacing with a simulator

Simulators typically require from a model to compute
the contributions to KCL equations (given by vector-
valued functions g and q) for a given vector of inde-
pendent variables (x). The system of first order differ-
ential equations is assembled as discussed in section 2
and can be expressed as

 � � � �* * * *d 0
dt

� �g x q x (6)

where vector x* is obtained by meaningfully merging
vectors of independent variables corresponding to in-
dividual circuit elements (x) because an independent
circuit variable can appear in multiple circuit elements.
Functions g* and q* are obtained by adding up contri-
butions from circuit components (g and q) depending
on the way their terminals are connected to the cir-
cuit’s nodes. Each node corresponds to one KCL equa-
tion. Contributions of grounded terminals are ignored.
The last n - m components of each element’s g and q

correspond to extra equations. These equations com-
plement the set of KCL equations to form the circuit’s
system of equations.

Numerical algorithms employed by simulators depend
on the derivatives of g* and q* with respect to the in-
dependent variables x*. These derivatives are gathered
in the Jacobian matrices G* and C* whose components
are given by

*
*

*
i

ij
j

gG
x
�

�
�

 (7)

 *
*

*
i

ij
j

qC
x
�

�
�

 (8)

Because g* and q* were constructed by adding contri-
butions from vector valued functions g and q matrices
G* and C* can be constructed by adding contributions
from Jacobian matrices G and C computed for func-
tions g and q, respectively. To summarize, an analog
device model must compute the Jacobian matrices
G and C alongside g and q for a given vector of inde-
pendent variables x.

In time-domain analysis equation (6) must be numeri-
cally integrated to obtain a system of nonlinear alge-
braic equations. When backward Euler integration is
used equation (6) becomes

� �� � � �� � � �� �* * * *
1* *

1
1

k k
k

k k

t t
t

t t
�

�
�

�
�

�

q x q x
g x = 0 (9)

where tk + 1 is the timepoint for which we are solving
the circuit and tk is the previous timepoint where the
circuit’s solution is already known. In older simulators
(e.g. SPICE3, Gnucap, and QUCS) numerical integration
is performed by the device model itself. Consequently
models in transient analysis do not compute a separate
q(x). Instead they replace g(x) and its Jacobian with

Table 1: Length in lines of code (l) and the number of parameters (p) for various MOSFET compact device models.

Compact model released language l p l/p
BSIM3 3.2.4 2001 C 14176 439 32
BSIM3 3.3.0 2005 C 13741 441 31
BSIM4 4.5.0 2005 C 23882 789 30
BSIM4 4.8.2 2020 C 27561 926 30
BSIM4 4.8 (Cogenda) 2019 Verilog-A 12591 897 14
BSIM6 6.0.0 2013 Verilog-A 3628 757 4.8
BSIM-BULK 107.1.0 2022 Verilog-A 4992 1073 4.7

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

275

� � � � � � � �� �

1

k

k k

t
t t�

�
� �

�

q x q x
f x g x and (10)

 � � � � � � � �1
1k kt t �
�� � �F x G x C x (11)

In this way the code that computes the DC solution can
be used without any modification for computing the
time-domain solution from

() 0=f x* . (12)

Here f*(x) is assembled from contributions of individual
elements (i.e. f(x)) in the same way as previously g*(x)
and q*(x) have been assembled from g(x) and q(x).

This approach violates the separation between the
simulator and the models and unnecessarily increases
the size of the device model. On the other hand, it also
has some advantages besides code reuse between DC
and time-domain analysis, like the capability to imple-
ment non quasi-static effects in transistor models with-
out adding extra nodes to the circuit (for how this is
done in case of a bipolar transistor, see [23]). Serious
flaws can also arise from this approach, e.g. the charge
conservation problem in early MOSFET models [24, 25].
Charge nonconservation is a serious bug that was facil-
itated by the capability of handling numerical integra-
tion within models themselves. The problem originated
from the attempt to formulate model’s dynamics with
ordinary reciprocal capacitors between nodes instead
of charges stored at nodes. Charge non-conservation is
impossible to “implement by accident” if charge based
modelling is enforced like in Verilog-A.

Modern simulators separate numerical integration
from device model evaluation. Using the formulation
given by (6) as the basis of a circuit simulator adding
new types of analysis becomes a much simpler task.
This has been demonstrated in the past by commercial
and free simulators, like Spectre [26] and fREEDA [27].

4 Free software compilers for compact
models in Verilog-A

This sections gives an overview of Free software Ver-
ilog-A compilers where the term Verilog-A compiler is
meant in a very broad sense. Two of these compilers
(ADMS and OpenVAF) only support a subset of Verilog-
A for compact modelling. The third one (Modelgen-
Verilog) aims to be a full Verilog-AMS compiler once
completed. Since this paper’s focus is on compact
modelling all three compilers are viable candidates for

compiling compact models once their limitations are
taken into account.

4.1 ADMS

ADMS (Automatic Device Model Synthesizer) [28] is the
oldest of Free software Verilog-A compilers. It was de-
veloped by Motorola. At the time of its development
MOSFET models were becoming excessively large. Back
then the state of the art model (BSIM4) had almost 1000
parameters. The only way to use an advanced MOSFET
model was either to use its official Open source imple-
mentation for the SPICE3 simulator and accept all the
quirks and shortcomings of SPICE3 or implement the
model from scratch for the simulator of choice.

Most commercial simulators at the time offered an API
(e.g. [26, 29]) via which an external model could be
implemented in C. Implementing a model with sev-
eral hundred parameters involves writing tens of thu-
osands of lines of C code. Derivatives of currents and
charges must be manually implemented. This process
is error prone and slow. Furthermore, due to different
APIs a large part of the model has to be rewritten for
each simulator.

Verilog-A solves these problems since the model has
to be implemented only once and the implementation
can then be used by all simulators supporting Verilog-
A. ADMS was developed as a tool that compiles Verilog-
A into a model utilizing the C API of a selected simula-
tor. After defining a new ADMS backend tailored to a
specific simulator one can compile arbitrary Verilog-A
models (within the limitations of ADMS) for that simu-
lator. The process of compilation with ADMS is fairly
slow. For a modern CMC model it can take more than
a minute (e.g. for PSPv103 [42]). The generated code
must be compiled (usually with a C/C++ compiler) and
linked either statically with the simulator (e.g. Xyce
[36]) or into a dynamic library that can be loaded by
the simulator on-demand (e.g. Spectre [26], Ngspice
[33], Gnucap [34]).

ADMS itself is implemented in C utilizing the Glib li-
brary [31]. The compiler operates by parsing the
Verilog-A code and representing it in the Extensible
Markup Language (XML) [30]. The specifications for the
code generator (backend) are defined in XSLT, a sub-
set of XSL [32], which is a language for representing
XML document transformations. Models generated by
ADMS are approximately 20% slower that hand-coded
models [28].

Over the years ADMS has been used as the only avail-
able Verilog-A solution for compact modelling in Open
source simulators like Ngspice [33], Gnucap [34], Quc-

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

276

sator [35], and Xyce [36]. Of all the listed simulators
Xyce is the most advanced one with the best ADMS
support. Nevertheless its ADMS integration has many
limitations [37]. CMC models can be handled by ADMS
after applying some manual modifications to the mod-
el (e.g. [38]).

ADMS is no longer being developed by its author. De-
velopment has been taken over by the Qucs project
[39]. Contributions to the Git repository since 2017 are
scarce and have ceased in 2022.

4.2 OpenVAF

OpenVAF [40] is a fairly recent development. It evolved
from VerilogAE [41] whose primary purpose was to
ease the process of model parameter extraction by
retrieving the model equations from Verilog-A code.
OpenVAF translates Verilog-A into a dynamic library
with the help of the LLVM library [47]. LLVM emits high-
ly optimized machine code and is generally used for
implementing compilers. The resulting dynamic library
interfaces with the simulator via the Open Source De-
vice Interface API (OSDI API) [46].

Internally OpenVAF translates Verilog-A code into an
abstract syntax tree (AST). Then it performs several
transformations in the steps that follow. The first step
resolves undefined references to other parts of the
code to produce high-level intermediate representa-
tion (HIR). HIR is further processed by constructing a
control flow graph, thus defining the execution order
of the statements. Symbolic derivatives of expressions
with Verilog-A operators ddx and ddt are computed to
be later used during the construction of the Jacobians
and module’s output variables. The result of HIR pro-
cessing is the medium level intermediate representa-
tion (MIR). From MIR the LLVM intermediate represen-
tation (IR) is generated. IR is a high-level abstraction
of the machine code. LLVM performs several low-level
optimizations on IR before emitting machine code for
the target platform.

The resulting code is very efficient and faster than the
code generated by an ordinary C/C++ compiler from
ADMS output. OpenVAF supports a significant part of
the Verilog-A specification and can compile all of the
CMC models without any manual modifications. There
are some limitations, though. The compiler does not

Table 2: Simulation runtimes for various models (taken from [42]). Builtin devices defined in C/C++ are denoted by a
dash in the compiler column.

Simulator Free Compiler/built-in t [s] Comment
HICUM/L2v2p4p0 characteristic
Ngspice yes OpenVAF 9.16
Ngspice yes - 14.64 slow implementation
Xyce yes ADMS 36.42 strict convergence checks
Xyce yes - 26.56 strict convergence checks
ADS no proprietary 8.63
ADS no - 7.01
Spectre no proprietary 52.61
Spectre no - 25.33
BSIMSOI 4.4.0 characteristic
Ngspice yes OpenVAF 8.47
Ngspice yes - 7.98 manually optimized model
BSIMBULK 106.2 characteristic
Ngspice yes OpenVAF 2.08
Ngspice yes ADMS 3.38
BSIMBULK 106.2 transient
Ngspice yes OpenVAF 9.47
Ngspice yes ADMS 13.70
PSP 103.8 inverter
Ngspice yes OpenVAF 20.01
Ngspice yes ADMS 25.07
PSP 103.8 with ISCAS C7552
Ngspice yes OpenVAF 1200
Ngspice yes ADMS 1500

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

277

support analog events, genvars, hidden states, Laplace
filters, paramsets, and hierarchical modules. But since
these features are rarely used in compact models the
lack of them does not represent a significant shortcom-
ing at this point in time.

OpenVAF has replaced ADMS in Ngspice. It is also used
by a free but closed-source simulator Spice Opus [48]. Fi-
nally, it is the core part of a novel Free software simulator
VACASK [43, 44] for which the devices supported by the
simulator are almost exclusively defined in Verilog-A.

Table 2 outlines the performance of OpenVAF-gen-
erated models with respect to builtin models (manu-
ally coded in C/C++), models generated by ADMS, and
models generated by commercial compilers. These re-
sults are sparse and not sufficient to reliably determine
the compiler that produces the fastest models, but
nevertheless, they are a good indicator what one can
expect from ADMS and OpenVAF.

Several Verilog-A compilers were tested by using the
compiled HICUM model to compute the transistor’s
characteristics. OpenVAF comes out close to the top,
second only to the compiler in ADS [49]. Xyce with ADMS
comes out as one of the slowest solutions. This can be
largely attributed to more strict convergence checks in
Xyce when compared to Ngspice. Ngspice performance
on this test problem can be attributed to sub-optimally
coded derivatives in the built-in HICUM model.

When compared to a mature and highly optimized
manually written builtin model in Ngspice (BSIMSOI
4.4.0) the OpenVAF-compiled model exhibits only
6% slower performance. On the two BSIMBULK test
problems (characteristic and transient) the ADMS-
compiled model is 45% to 60% slower than the one
compiled with OpenVAF. This difference is significantly
greater than the difference between models compiled
by ADMS and manually coded models (models gen-
erated by ADMS are on average 20% slower). On the
PSP inverter test problem the ADMS-compiled model
is 20% slower than the one compiled with OpenVAF.
The large test problem (ISCAS C7552) once again con-
firms the speed difference between models generated
by ADMS and OpenVAF. These two benchmark results,
the result obtained with the BSIMSOI model, and the
fact that ADMS models are on average 20% slower than
hand-coded models indicate that OpenVAF-generated
models are roughly as fast as manually coded compact
models.

4.3 Modelgen-Verilog

Modelgen-Verilog (MGV) [45] is a Verilog-AMS compiler
for the Gnucap [34] circuit simulator. It has been in de-

velopment since 2023. The ultimate goal of the project
is to implement full support for Verilog-AMS in Gnucap.
Presently the compiler outputs C++ code that is tightly
coupled with the Gnucap simulator. After compiling
and linking the code a dynamic library is obtained that
can be loaded by Gnucap. The dependence on Gnucap
could be removed in the future as backends for other
simulators get added.

At the present (June 2024) the compiler seems to be
capable of processing some CMC models [50], albeit
quite inefficiently since a compiled PSP103 model uses
30 internal nodes, while its Verilog-A source code de-
fines only 17 internal nodes. Consequently, simulations
with the generated devices are reportedly slow [50]. A
comparison akin to that in Table 2 has not been pub-
lished yet.

A significant improvement in speed is expected from
paramset support. Paramsets substitute most of the
model parameters with concrete numbers upon which
the expressions are simplified (constant folding) thus
significantly reducing the computational burden of
model evaluation. Further speedup could be obtained
if the analog part of the compiler would implement op-
timizations akin to those in OpenVAF.

Modelgen-Verilog is a project whose ambitions are
much bigger than the topic of this paper. Currently the
compiler supports paramsets, analog events, hierarchi-
cal models, Verilog-A disciplines, discontinuities, and fre-
quency domain filters. These features are missing in the
remaining two Verilog-A compilers. Due to its early stage
of development not many optimizations have been ap-
plied yet and there is a lot of room for improvement.

5 Free software/Open source simulators
supporting compact models in Verilog-A

Table 3 gives a concise overview of the Free software/
Open source analog circuit simulators that support
compact models defined in Verilog-A. Note that the
term Free software cannot be applied to Ngspice be-
cause of its license. Despite this Ngspice is still Open
source and parts of it are Free software.

Core size of a simulator is the size of the simulator’s
source code excluding code that defines the device
models. Simulators usually offer some kind of param-
eter sweep which is significantly more efficient than
repeatedly running the simulator with a modified in-
put file. Although a sparse linear solver is almost a must
for a circuit simulator, not all simulators use one (e.g.
Qucsator).

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

278

The process of simulation can be divided into two
steps that in general must be repeated multiple times
in order to complete a circuit analysis: evaluation of
the circuit’s components and solving a system of lin-
ear equations. Both steps can take advantage of paral-
lel processing which can speed up the simulation and
facilitate the simulation of circuits that are too big to
fit on a single computer. Not many simulators exploit
parallelism (only Xyce and partly Ngspice).

Finally, for a simulator it is important to provides basic
SPICE device models (e.g. Gummel-Poon BJT, MOSFET
levels 1-3, and 6, JFET, and MESFET). Mature simulators
provide these device models (Xyce, Ngspice, Gnucap)
while newer ones do not (VACASK, Qucs).

In the remainder of this section a more detailed de-
scription will be given for each one of the mentioned
simulators.

5.1 Xyce

Xyce [36] is the most advanced of all the simulators
listed in Table 3. Like all modern simulators, Xyce’s core
separates the device models from analysis implemen-
tation which makes it possible to implement a new
analysis without having to change the device models.
The simulator is capable of accelerating computations
via parallel computing. Numerical capabilities are pro-
vided by the Trilinos [51] suite of libraries that offer uni-
fied wrappers around various state of the art solvers
(like KLU). Element evaluation, as well as, certain linear
solvers can take advantage of parallel processing. The
latter is efficient only for very large circuits. Xyce offers

all the standard SPICE circuit analyses, as well as, har-
monic balance analysis.

Support for compact models in Verilog-A is provided
by ADMS. The development team announced in 2022
[52] that they intend to build their own Verilog-A com-
piler based on an in-house Python library for (symbolic)
differentiation. Since then there has been little news re-
garding this subject. Currently ADMS in Xyce has many
limitations [37], largely due to the nature of ADMS.

5.2 Ngspice

Ngspice [33] is the most commonly used Open source
simulator. It is based on the original SPICE3f5 source
code in C. The original source code has been signifi-
cantly extended and many bugs and shortcomings
were fixed. One of these shortcomings was the original
linear solver library of SPICE3 [55], which by now is no
longer competitive. It has been replaced with the much
faster KLU library [56].

Unfortunately, as is customary with all SPICE-based
simulators, the models are tightly coupled with the
circuit analyses. This makes it hard to add new types
of analysis without making extensive changes to the
large library of device models. Ngspice partly supports
parallel evaluation of elements, either on multiple local
CPU cores via OpenMP [53], or (for some elements) on
a GPU via CUDA [54]. The linear solver, however, is not
parallel.

Support for Verilog-A compact models was implement-
ed at first with ADMS. Recently, the OSDI API has been

Table 3: Comparison of Free software simulators. Asterisk denotes a feature under development as of September
2024.

Xyce Ngspice VACASK Gnucap Qucsator
Language C++ C C++ C++ C++
Core size (lines of code) 185500 63800 36700 28600 50300
Verilog-A CM support ADMS OpenVAF OpenVAF MGV or ADMS ADMS
Operating point (OP) yes yes yes yes yes
Small-signal AC yes yes yes yes yes
Transient yes yes yes yes yes
Small-signal noise yes yes yes no yes
Harmonic balance yes no no* no yes
Analyses supported by sweep all OP all OP all
Sweep depth arbitrary 2 arbitrary arbitrary 1
Analysis/device separation yes no yes no no
Sparse solver yes yes yes yes no
Parallel evaluation yes yes no no no
Parallel solver yes no no no no
SPICE devices yes yes no* yes partly

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

279

implemented which in turn makes it possible to use
OpenVAF-generated models.

5.3 Gnucap

Gnucap [34] has a long history dating back to 1982.
Since then it has been in slow, but steady develop-
ment. The set of circuit analyses is fairly limited (only
operating point/DC sweep, AC, and transient analyses
are supported). The separation between the device
models and the analyses is not complete as the models
still have separate matrix loading functions for the time
domain and for the frequency domain. This is alleviated
by the fact that Gnucap’s models are mostly generated
with Modelgen, Gnucap’s own model generator, not
to be confused with Modelgen-Verilog. Models gen-
erated by both model generators are accessed by the
simulator through the same API. Another shortcoming
of Gnucap is its linear solver which is outdated. On the
bright side, the solver offers functionality not available
in other Free software circuit simulators because it can
do partial solves of matrices when only a part of the
matrix changes.
Support for Verilog-A compact models is provided by
ADMS. Recently, development of a novel Verilog-AMS
capable compiler for Gnucap has started (Modelgen-
Verilog [45]). The compiler already supports a large
subset of Verilog-AMS.

5.4 Qucsator

Qucsator [35] is a fairly new simulator whose begin-
nings date back into early 2000s when it started as the
Quite universal circuit simulator (Qucs) project’s own
simulator. The simulator offers operating point/DC, AC,
S-parameter, transient, and harmonic balance analysis.
The models are tightly coupled with the analyses so
implementing a new kind of analysis generally means
all device models need to be modified, too. A major
shortcoming is the fact that the simulator does not use
a sparse linear solver. Instead an ad-hoc dense matrix
solver is used, which makes the simulator impractical
for anything but the smallest of circuits. Support for
Verilog-A compact models is provided by ADMS.

5.5 VACASK

VACASK [43, 44] is a recently published simulator. It
separates the models from the analyses thus simplify-
ing the implementation of analyses by avoiding chang-
es in device models. VACASK uses a state of the art lin-
ear solver (KLU).

The simulator offers operating point/DC, AC, small-sig-
nal transfer function (DC and AC), transient, and noise
analysis. Harmonic balance analysis is currently under

development, as well as, support for SPICE builtin de-
vice models. VACASK supports the OSDI API so that Ver-
ilog-A compact models compiled with the OpenVAF
compiler can be used. In fact, most of the simulator’s
device library is implemented in Verilog-A. An excep-
tion to this are independent sources, linear controlled
sources, and inductive couplings. These elements can-
not easily be implemented in the Verilog-A subset sup-
ported by OpenVAF if one wants them to provide the
same kind of interface as SPICE3 models do.

VACASK is in early stages of development. Preliminary
benchmarks indicate that in single CPU mode it runs
faster than Xyce, Gnucap, and Ngspice [43].

6 Conclusion

Verilog-A is the analog subset of Verilog-AMS. Over the
years Verilog-A has become the de-facto standard for
distributing compact models of semiconductor devic-
es. Models implemented in Verilog-A need not specify
any derivatives which makes the models significantly
shorter and the coding process less errorprone. Verilog-
A focuses on the equations describing the behavior of
a circuit element. This reduces the size of a compact
model by a factor up to 6 compared to SPICE3 compat-
ible C code. Verilog-A compilers can significantly speed
up the execution of a model by applying optimizations
before the final machine code is emitted. The resulting
model can be as fast as the hand-coded version of the
model.

Verilog-A compilers are supplied with most commer-
cial simulators. The available alternatives in the realm
of Free software are much more scarce. Simulator de-
velopers can choose between three alternatives. ADMS
is an old solution that requires manual intervention in
the model code. OpenVAF is a modern compiler that
produces fast models. Both alternatives support only a
subset of Verilog-A. OpenVAF is more suitable because
it is capable of compiling all public CMC models with-
out modifications. The third alternative (Modelgen-
Verilog) is a Verilog-AMS compiler that already sup-
ports a large part of the standard despite being in the
early stages of development. It is capable of compiling
Verilog-A compact models, but the resulting code is
somewhat inefficient. Unfortunately its interface cur-
rently supports only the Gnucap simulator.

Several Open source and Free software simulators sup-
port Verilog-A, ranging from the most advanced one
(Xyce), through SPICE3-based Ngspice, and newer sim-
ulators like Qucsator, Gnucap, and VACASK. All of these
simulators support compact models defined in Verilog-
A via one of the three mentioned alternatives.

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

280

7 Acknowledgements

This research was funded in part by the Slovenian Re-
search Agency within the research program ICT4QoL—
Information and Communications Technologies for
Quality of Life, grant number P2-0246.

8 References

1. Flake, P., et.al. Verilog HDL and its ancestors and
descendants. Proceedings of the ACM on Pro-
gramming Languages, vol. 4 (2020), pp. 1–90.

2. 1364-1995 - IEEE Standard Verilog Hardware De-
scription Language, 1996,

 https://doi.org/10.1109/IEEESTD.1996.81542.
3. 1364-2001 - IEEE Standard Verilog Hardware De-

scription Language, 2001,
 https://doi.org/10.1109/IEEESTD.2001.93352.
4. 1364-2005 - IEEE Standard for Verilog Hardware

Description Language, 2006,
 https://doi.org/10.1109/IEEESTD.2006.99495.
5. 1800-2005 - IEEE Standard for SystemVerilog: Uni-

fied Hardware Design, Specification and Verifica-
tion Language, 2005,

 https://doi.org/10.1109/IEEESTD.2005.97972.
6. 1800-2009 - IEEE Standard for SystemVerilog–Uni-

fied Hardware Design, Specification, and Verifica-
tion Language, 2009,

 https://doi.org/10.1109/IEEESTD.2009.5354441.
7. 1800-2012 - IEEE Standard for SystemVerilog–Uni-

fied Hardware Design, Specification, and Verifica-
tion Language, 2013,

 https://doi.org/10.1109/IEEESTD.2013.6469140.
8. 1800-2017 - IEEE Standard for SystemVerilog–Uni-

fied Hardware Design, Specification, and Verifica-
tion Language, 2018,

 https://doi.org/10.1109/IEEESTD.2018.8299595.
9. 1800-2023 - IEEE Standard for SystemVerilog–Uni-

fied Hardware Design, Specification, and Verifica-
tion Language, 2024,

 https://doi.org/10.1109/IEEESTD.2024.10458102.
10. Verilog-A Language Reference Manual, Analog

Extensions to Verilog HDL, https://www.siue.
edu/∼gengel/ece585WebStuff/OVI VerilogA.pdf,
2024.

11. Verilog-AMS Language Reference Manual, version
2.4.0, June 2024, [online] Available: https://www.
accellera.org/images/downloads/standards/v-
ams/VAMSLRM-2-4.pdf

12. Verilog-AMS standard, June 2024, [online] Avail-
able: https://www.accellera.org/downloads/
standards/v-ams

13. Saber(R) MAST Language User Guide, Synopsys,
2008.

14. SystemVerilog AMS (Analog/Mixed-Signal) Work-
ing Group, June 2024, [online] Available: https://
www.eda.org/activities/workinggroups/system-
verilog-ams

15. What is Free Software?, September 2024, [on-
line] https://www.gnu.org/philosophy/free-sw.
en.html

16. Open Source Initiative, September 2024, [online]
https://opensource.org/

17. GCC, the GNU Compiler Collection, September
2024, [online] Available: https://gcc.gnu.org/

18. Welcome to Verilator, September 2024, [online]
Available: https://www.veripool.org/verilator/

19. Ho, C.-W., Ruehli, A., and Brennan, P., The Modified
Nodal Approach to Network Analysis. Proc. 1974
Int. Symposium on Circuits and Systems, San
Francisco. pp. 505–509.

20. BSIM Group, June 2024, [online] Available: http://
bsim.berkeley.edu/

21. VA-BSIM48, June 2024, [online] Available: https://
github.com/cogenda/VA-BSIM48

22. Compact Model Coalition, June 2024, [online]
Available: https://si2.org/cmc/

23. Weil, P., McNamee, L., Simulation of excess phase
in bipolar transistors. IEEE Trans. Circuits Syst., vol.
25 (1978), pp. 114-116.

24. Ward, D. E., Dutton, R. W., A charge-oriented mod-
el for MOS transistor capacitances. IEEE J. Solid-
State Circuits, vol. 13 (1978), pp. 703-708.

25. Yang, P., Epler, B. D., Chatterjee, P. K., An Investi-
gation of the Charge Conservation Problem for
MOSFET Circuit Simulation, IEEE J. Solid-State Cir-
cuits, vol. 18 (1983), pp. 128-138.

26. Spectre Circuit Simulator Reference, Cadence,
2003.

27. Steer, M. B., Kriplani, N. M., Luniya, S., Hart, F., Low-
ry, J., Christoffersen, C. E., fREEDA: An Open Source
Circuit Simulator, 2006 International Workshop
on Integrated Nonlinear Microwave and Millime-
ter-Wave Circuits, IEEE, January 2006.

28. Lemaitre, L., McAndrew, C., Hamm, S., ADMS-au-
tomatic device model synthesizer, Proceedings of
the IEEE 2002 Custom Integrated Circuits Confer-
ence, IEEE, May 2002.

29. HSPICE MOSFET Models Manual, Synopsys, 2005.
30. Extensible Markup Language (XML), June 2024,

[online] Available: http://www.w3.org/XML.
31. Glib-2.0, June 2024, [online] Available: https://

docs.gtk.org/glib/
32. XSL transformations (XSLT), June 2024, [online]

Available: http://www.w3.orglTR/xslt
33. Ngspice - open source spice simulator, June 2024,

[online] Available: https://ngspice.sourceforge.io/
34. Gnu Circuit Analysis Package - Git Repositories,

June 2024, [online] Available: https://savannah.
gnu.org/git/?group=gnucap

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

281

35. Circuit simulator of the Qucs project, Septem-
ber 2024, [online] Available: https://github.com/
Qucs/qucsator

36. Xyce - Parallel electronic simulation, June 2024,
[online] Available: https://xyce.sandia.gov/

37. Xyce/ADMS Users Guide, June 2024, [online]
Available: https://xyce.sandia.gov/documenta-
tion-tutorials/xyce-adms-users-guide/

38. Ngspice user’s manual (version 38), June 2024,
[online] Available: https://ngspice.sourceforge.io/
docs/ngspice-38-manual.pdf

39. ADMS is a code generator for the Verilog-AMS
language, June 2024, [online] Available: https://
github.com/Qucs/ADMS

40. Kuthe, P., Müller, M., Krattenmacher, M., Schr¨oter,
M., OpenVAF Verilog-A Compiler, MOSAK Febru-
ary 25 2022, February 2022.

41. VerilogAE: An Open Source Verilog-A Compiler for
Compact Model Parameter Extraction, Journal of
Electron Devices Society, vol. 8 (2020), pp. 1416-
1423.

42. OpenVAF - Performance, June 2024, [online]
Available: https://openvaf.semimod.de/docs/de-
tails/performance/

43. Bűrmen, A., VACASK: a Verilog-A Circuit Analysis
Kernel, Free Silicon Conference 2024, September
2024, [online] Available: https://wiki.fsi.org/index.
php?title=VACASK: a Verilog-A Circuit Analysis
Kernel

44. Bűrmen, A., VACASK - Verilog-A Circuit Analysis
Kernel, September 2024, [online] Available: htt-
ps://codeberg.org/arpadbuermen/VACASK

45. Modelgen-Verilog GIT repository, June 2024, [on-
line] Available: https://git.savannah.gnu.org/cgit/
gnucap/gnucap-modelgen-verilog.git

46. Open Source Device Interface (OSDI) Specifica-
tion – working Draft, SemiMod, 2022, June 2024,
[online] Available: https://openvaf.semimod.de/
osdi/osdi v0p3.pdf

47. The LLVM Compiler Infrastructure, June 2024,
[online] Available: https://llvm.org/

48. Puhan, J, B˝urmen, ´A., Fajfar, I., Tuma, T., Spice
Opus June 2024, [online] Available: http://www.
spiceopus.si/

49. Advanced Design System, 2024, June 2024, [on-
line] https://www.keysight.com/us/en/products/
software/pathwave-designsoftware/pathwave-
advanced-design-system.html

50. Salfelder, F., Verilog-AMS in Gnucap, Free Silicon
Conference (FSiC) 2023, June 2024, [online] Avail-
able: http://felix.salfelder.org/gnucap/fsic gnu-
cap23.pdf

51. The Trilinos Project Website, June 2024, [online]
Available: https://trilinos.github.io

52. Verley, J., Keiter, E., Xyce/ADMS and the Xyce Ver-
ilog-A Path Forward, Q1 2022 MOS-AK Panel, June

2024, [online] Available: https://mosak.org/panel
Q1 2022/presentations/Verley Xyce MOS-AK Q1
2022.pdf

53. Chandra, R., et.al., Parallel Programming in
OpenMP, Morgan Kaufmann, 2000.

54. Sanders, J., Kandrot, E., CUDA by Example: An
Introduction to General-Purpose GPU Program-
ming, Addison-Wesley Professional, 2010.

55. Kundert., K., SPARSE 1.3, June 2024, [online] Avail-
able: https://www.netlib.org/sparse/

56. Davis, T. A., Natarajan, E. P., Algorithm 907: KLU,
a direct sparse solver for circuit simulation prob-
lems. ACM Trans. Math. Softw., vol. 37 (2010), pp.
1-17.

Arrived: 22. 07. 2024
Accepted: 09. 10. 2024

Copyright © 2024 by the Authors.
This is an open access article dis-
tributed under the Creative Com-

mons Attribution (CC BY) License (https://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Á. Bűrmen et al.; Informacije Midem, Vol. 54, No. 4(2024), 271 – 281

