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Abstract: Verilog-A is the analog subset of Verilog-AMS - a hardware description language for analog and mixed-signal systems. 
Verilog-A is commonly used for the distribution of compact models of semiconductor devices. for such models to be usable a 
Verilog-A compiler is required. The compiler converts the model equations into a form that can be used by the simulator. Such 
compilers have been supplied with commercial simulators for many years now. Free software alternatives are much more scarce and 
limited in the features they offer. The paper gives an overview of Verilog-A, Free software Verilog-A compilers, and Free software/Open 
source simulators that can simulate compact models defined in Verilog-A. Advantages and disadvantages of individual compilers and 
simulators are highlighted.
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Odprtokodna programska oprema za uporabo 
kompaktnih modelov v jeziku Verilog-A 
Izvleček: Verilog-AMS je opisni jezik za mešana analogno-digitalna vezja. Verilog-A je njegov podsklop, ki je namenjen opisu analognih 
vezij. Pogosto ga uporabljamo za distribucijo kompaktnih modelov polprevodniških elementov. Da bi take modele lahko uporabili v 
simulatorju vezij, potrebujemo prevajalnik za Verilog-A. Ta pretvori model v obliko, ki jo simulator lahko uporabi pri izračunu odziva 
vezja. Prevajalniki za Verilog-A so že dlje časa sestavni del tržnih programskih paketov za simulacijo vezij. Odprtokodnih alternativ 
je manj in podpirajo samo del specifikacije jezika. Članek poda pregled odprtokodnih prevajalnikov in simulatorjev s podporo za 
kompaktne medele opisane v jeziku Verilog-A s poudarkom na prednostih in slabostih posameznih prevajalnikov in simulatorjev. 

Ključne besede: analogna vezja, kompaktni modeli, Verilog-A, prevajalnik, simulacija
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1 History of Verilog-A

Verilog-A is a hardware description language (HDL) for 
analog circuits. It is based on Verilog, which by itself is 
a HDL for digital circuits. The history of Verilog [1] dates 
back to 1980s when Gateway Design Automation in-
troduced the language. In 1990 the language was ac-
quired by Cadence Design Systems. The language was 
transferred to public domain where it was supported 
and extended by Open Verilog International (OVI). In 
2000 Accellera Systems Initiative was founded from the 
merger between OVI and VHDL International and has 
been managing the language to date.

Verilog has been standardised by IEEE as standards 
1364-1995 (Verilog-95) [2], 1364-2001 (Verilog-2001) 
[3], and 1364-2005 (Verilog-2005) [4]. Since then Ver-
ilog has evolved into SystemVerilog which offers new 
design (data lifetime specification, more advanced 
data types, new procedural blocks, and interfaces) and 
verification features (new data types, object-oriented 
programming model, generation of constrained ran-
dom values, assertions, coverage, and synchronisation 
primitives). SystemVerilog has been standardised by 
IEEE as standards 1800-2005 (superset of Verilog-2005) 
[5] and 1800-2009 (SystemVerilog 2009) [6] with fur-
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ther updates in 2012 (1800-2012) [7], 2017 (1800-2017) 
[8], and 2023 (1800-2023) [9].

In parallel to the evolution of Verilog a new HDL for 
analog/mixed signal systems was being developed. 
Verilog-A, which is a HDL for purely analog systems, 
was released in 1996 by OVI [10]. Its syntax was based 
on the syntax of Verilog, but the language constructs 
were designed for describing analog systems in terms 
of ordinary differential equations (ODE). The language 
was primarily created to standardize the Spectre simu-
lator’s behavioral language in times when it was facing 
competition from VHDL that was getting analog capa-
bilities via incorporating analog HDL languages like 
MAST [13]. Verilog-A was developed with a more ad-
vanced language in mind - one that would be capable 
of describing analog, as well as, mixed-mode systems. 
The language was released in 1998 and was deemed 
Verilog-AMS (version 1.3). In the year 2000 version 2.0 
of Verilog-AMS was released. Since then Verilog-AMS 
has beed updated in 2009 (version 2.3.1), 2014 (version 
2.4.0) [11], and 2023 (Verilog-AMS 2023) [12]. Currently 
work is underway to merge Verilog-AMS with System-
Verilog to produce SystemVerilog-AMS [14]. Verilog-A 
and Verilog-AMS did not become IEEE standards and 
have remained under the oversight of Accellera. Mod-
ern Verilog-A is the analog subset of Verilog-AMS.

Free software [15] alternatives for Verilog-A are impor-
tant, among other things, because they make Verilog-A 
and the compact models defined in Verilog-A available 
to a wide audience without having to pay the high 
cost of commercial tools. Free software means that 
the users have the freedom to run, copy, distribute, 
study, change and improve the software. It is usually 
licensed under the GNU General Public License (GPL) 
or some other compatible license. Free software must 
not be confused with free software (lowercase). The 
latter means only that the price of the software is zero 
and does not give its users the same freedom as Free 
software. All Free software is Open source [16], but 
every Open source software is not Free software. Open 
source licenses can be more restrictive that GPL. Free 
software has great impact. As an example, consider the 
importance, usefulness, and implications of the GNU C 
Compiler [17] or Free software for Verilog-95 simulation 
(i.e. Verilator, [18]).

2 Using Verilog-A for compact 
modelling

Verilog-A is commonly used for the distribution of 
compact models (CM) of semiconductor devices. Com-
pact models provide the equations linking terminal 

currents to terminal voltages of circuit components 
like MOSFETs, bipolar transistors, diodes, etc. The usual 
approach to formulating circuit equations is modified 
nodal analysis (MNA) [19] where as many as possible 
branch currents are explicitly expressed and substitut-
ed into Kichoff current law equations. 

In every circuit one Kirchoff current law equation (KCL) 
can be constructed for each node, with the exception 
of the reference node. Each node is associated with a 
nodal voltage (potential) which becomes an unknown 
in the system of equations. An exception to this is the 
reference node whose nodal voltage is assumed to 
be zero. Branch currents that cannot be explicitly ex-
pressed are kept as unknowns in the system of equa-
tions. In circuit simulation such branch currents are 
treated as the associated quantities of so-called flow 
nodes. For each flow node an equation has to be added 
to the system. This equation is obtained from the con-
stitutive relation of the element where the aforemen-
tioned branch resides and has a similar role as the KCL 
equation of an ordinary node. Flow nodes are typically 
used for modelling voltage sources and inductors.

Equations of a model are formulated as ordinary differ-
ential equations (ODE). Let us assume a circuit element 
has n  nodes (ordinary and flow nodes) of which the 
first m ≤ n nodes are terminals. All terminals are as-
sumed to be ordinary nodes. The associated quantities 
of the nodes are considered to be the independent 
variables and their values are listed in vector x. Let y 
denote the vector of terminal currents where a current 
is assumed to be positive if it flows into the correspond-
ing terminal. Components of y that correspond flow 
nodes or internal nodes are assumed to be 0.

Let g(x) and q(x) denote two vector valued (nonlinear) 
functions of independent variables. These two func-
tions represent the resistive and the reactive contribu-
tions to the equations associated with the aforemen-
tioned n nodes. For ordinary nodes the components of 
g(x) and q(x) correspond to resistive currents flowing 
from the nodes and charges accumulated at the nodes, 
respectively. For flow nodes they correspond to volt-
ages and fluxes. The resistive currents are assumed to 
be positive if they flow outward from a node. After a 
Verilog-A compact model is compiled its equations are 
formulated as

 � � � �d
dt

� �y g x q x     (1)

As an example, let us consider a semiconductor diode 
in Figure 1. The model has two terminals (A and C) and 
one internal node (Ai). It comprises a linear resistor (RS) 
that models the series resistance of a diode and a core 
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diode that models the nonlinear diode characteristic 
and its charge storage. The noise generated by the di-
ode and its series resistance is modelled by noise sourc-
es with power spectral densities SR and SD. Vectors y and 
x in equation (1) can be written as  � �T0A Ci i�y  
and � �TA C Aiv v v�x . The two nonlinear vector-
valued functions are

� �
� �
� �

� � � �

1

1

S A Ai

D Ai C

S Ai A D Ai C

R v v
i v v

R v v i v v

�

�

� ��
� �� � �� �
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 � � � � � �0 T
D Ai C D Ai Cq v v q v v� �� � � �� �q x  (3)

To simplify expressions let us neglect the diode’s junc-
tion capacitance and assume it exhibits only diffusion 
capacitance. Then functions iD and qD can be written as
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The power spectral densities of the two 
noise sources are  4 /R SS kT R�  and 

� � � �2 /fA
D D Ai C f D Ai CS qi v v K i v v f� � � � . IS, τ, Kf , and 

Af are diode parameters and VT is the thermal voltage 
(kT/q). The Boltzmann constant, the absolute tempera-
ture, and the electron charge are denoted by k, T, and 
q, respectively. The core diode noise source (SD) com-
prises a frequency-independent shot noise component 
and a flicker noise component whose power spectral 
density is inversely proportional to the frequency. The 
Verilog-A code defining the diode model is

   ‘include “constants.vams”
   ‘include “disciplines.vams”
module diode(A,C);
      inout A, C;
      electrical A, C, AI;
      parameter real Is = 1e-14 from [0:inf ];
      parameter real Rs = 0.1 from (0:inf ];
      parameter real Tau = 1e-6 from [0:inf ];
      parameter real Kf = 1e-12 from [0:inf ];
      parameter real Af = 1 from (0:inf ];
      real VT, id, qd, g;
      analog begin
          VT = ‘P_K*$temperature/‘P_Q;
          id = Is*(exp(V(AI, C)/VT)-1);
          g = Is/VT*exp(V(AI, C)/VT);
          qd = Tau*g;
          I(A, AI) <+ V(A, AI) / Rs;
          I(AI, C) <+ id + ddt(qd);
          I(A, AI) <+ white_noise(4*‘P_K*$temperature/ 
          Rs, “rs”);
          I(AI, C) <+ white_noise(2*‘P_Q*id, “id”);
          I(AI, C) <+ flicker_noise(Kf*pow(id, Af ), 1, “flicker”);
      end
endmodule

Once all models formulate their equations along the 
lines of (1) the system of equations describing a circuit 
can easily be assembled. For each circuit element the 
components of vector y corresponding to terminals are 
simply added to the KCL equations of nodes to which 
these terminals are connected. Rows of (1) that corre-
spond to internal nodes and complement the circuit’s 
KCL equations as extra equations. 

Verilog-A is capable of describing all aspects of a device 
covered by a legacy SPICE3 model implemented in C. 
There are several advantages in using Verilog- A. The 
models are significantly shorter. This arises from two 
facts. Writing a model in C can require many lines of 
code for expressing concepts that are expressed with 
a single line in Verilog-A. Secondly, Verilog-A compilers 
automatically derive the expressions for the derivatives 
of functions g and q with respect to components of 
x. These expressions must be formulated manually in 
SPICE3 models and can easily double the amount of C 
code that needs to be written. Manual implementation 
of derivatives is error prone. Incorrectly implemented 
derivatives result in convergence problems during 
simulation which can arise only under certain circum-
stances and are thus not easily detectable.

A C

SR SD

RS DI

iA iCAi

Figure 1: Model of a semiconductor diode. Noise 
sources SD and SR are treated separately by Verilog-A.
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Table 1 lists selected BSIM3, BSIM4 and BSIM-BULK 
(BSIM6) models [20]. The number of parameters of 
a model (p) is closely correlated with the size of the 
model expressed as lines of code (l). It is evident that 
SPICE3 models implemented in C are significantly more 
verbose than models implemented in Verilog-A. Mod-
els that are implemented in Verilog-A since their in-
ception (BSIM6, BSIM-BULK) comprise roughly 6 times 
fewer lines of code per parameter than SPICE3 models 
implemented in C (BSIM3, BSIM4). Even models trans-
lated from a SPICE3 model (e.g. Cogenda BSIM4 4.8 
[21]) comprise less than half the amount of code per 
parameter compared to SPICE3 models.

Modern device models, like BSIM-BULK, BSIM-SOI, HI-
CUM, MEXTRAM, etc., are all released by their develop-
ers (mostly universities) in Verilog-A. Compact Model 
Coalition (CMC) [22] performs quality checks and veri-
fies if the released models comply with standards.

3 Interfacing with a simulator

Simulators typically require from a model to compute 
the contributions to KCL equations (given by vector-
valued functions g and q) for a given vector of inde-
pendent variables (x). The system of first order differ-
ential equations is assembled as discussed in section 2 
and can be expressed as

 � � � �* * * *d 0
dt

� �g x q x    (6)

where vector x* is obtained by meaningfully merging 
vectors of independent variables corresponding to in-
dividual circuit elements (x) because an independent 
circuit variable can appear in multiple circuit elements. 
Functions g* and q* are obtained by adding up contri-
butions from circuit components (g and q) depending 
on the way their terminals are connected to the cir-
cuit’s nodes. Each node corresponds to one KCL equa-
tion. Contributions of grounded terminals are ignored. 
The last n - m components of each element’s g and q 

correspond to extra equations. These equations com-
plement the set of KCL equations to form the circuit’s 
system of equations. 

Numerical algorithms employed by simulators depend 
on the derivatives of g* and q* with respect to the in-
dependent variables x*. These derivatives are gathered 
in the Jacobian matrices G* and C* whose components 
are given by

*
*

*
i

ij
j

gG
x
�

�
�

     (7)

 *
*

*
i

ij
j

qC
x
�

�
�

     (8)

Because g* and q* were constructed by adding contri-
butions from vector valued functions g and q matrices 
G* and C* can be constructed by adding contributions 
from Jacobian matrices G and C computed for func-
tions g and q, respectively. To summarize, an analog 
device model must compute the Jacobian matrices 
G and C alongside g and q for a given vector of inde-
pendent variables x.

In time-domain analysis equation (6) must be numeri-
cally integrated to obtain a system of nonlinear alge-
braic equations. When backward Euler integration is 
used equation (6) becomes 

� �� � � �� � � �� �* * * *
1* *

1
1

k k
k

k k

t t
t

t t
�

�
�

�
�

�

q x q x
g x = 0 (9)

where tk + 1 is the timepoint for which we are solving 
the circuit and tk is the previous timepoint where the 
circuit’s solution is already known. In older simulators 
(e.g. SPICE3, Gnucap, and QUCS) numerical integration 
is performed by the device model itself. Consequently 
models in transient analysis do not compute a separate 
q(x). Instead they replace g(x) and its Jacobian with

Table 1: Length in lines of code (l) and the number of parameters (p) for various MOSFET compact device models.

Compact model released language l p l/p
BSIM3 3.2.4 2001 C 14176 439 32
BSIM3 3.3.0 2005 C 13741 441 31
BSIM4 4.5.0 2005 C 23882 789 30
BSIM4 4.8.2 2020 C 27561 926 30
BSIM4 4.8 (Cogenda) 2019 Verilog-A 12591 897 14
BSIM6 6.0.0 2013 Verilog-A 3628 757 4.8
BSIM-BULK 107.1.0 2022 Verilog-A 4992 1073 4.7
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q x q x
f x g x  and                (10)

 � � � � � � � �1
1k kt t �
�� � �F x G x C x                 (11)

In this way the code that computes the DC solution can 
be used without any modification for computing the 
time-domain solution from

( ) 0=f x* .                    (12)

Here f*(x) is assembled from contributions of individual 
elements (i.e. f(x)) in the same way as previously g*(x) 
and q*(x) have been assembled from g(x) and q(x). 

This approach violates the separation between the 
simulator and the models and unnecessarily increases 
the size of the device model. On the other hand, it also 
has some advantages besides code reuse between DC 
and time-domain analysis, like the capability to imple-
ment non quasi-static effects in transistor models with-
out adding extra nodes to the circuit (for how this is 
done in case of a bipolar transistor, see [23]). Serious 
flaws can also arise from this approach, e.g. the charge 
conservation problem in early MOSFET models [24, 25]. 
Charge nonconservation is a serious bug that was facil-
itated by the capability of handling numerical integra-
tion within models themselves. The problem originated 
from the attempt to formulate model’s dynamics with 
ordinary reciprocal capacitors between nodes instead 
of charges stored at nodes. Charge non-conservation is 
impossible to “implement by accident” if charge based 
modelling is enforced like in Verilog-A.

Modern simulators separate numerical integration 
from device model evaluation. Using the formulation 
given by (6) as the basis of a circuit simulator adding 
new types of analysis becomes a much simpler task. 
This has been demonstrated in the past by commercial 
and free simulators, like Spectre [26] and fREEDA [27].

4 Free software compilers for compact 
models in Verilog-A

This sections gives an overview of Free software Ver-
ilog-A compilers where the term Verilog-A compiler is 
meant in a very broad sense. Two of these compilers 
(ADMS and OpenVAF) only support a subset of Verilog-
A for compact modelling. The third one (Modelgen-
Verilog) aims to be a full Verilog-AMS compiler once 
completed. Since this paper’s focus is on compact 
modelling all three compilers are viable candidates for 

compiling compact models once their limitations are 
taken into account.

4.1 ADMS

ADMS (Automatic Device Model Synthesizer) [28] is the 
oldest of Free software Verilog-A compilers. It was de-
veloped by Motorola. At the time of its development 
MOSFET models were becoming excessively large. Back 
then the state of the art model (BSIM4) had almost 1000 
parameters. The only way to use an advanced MOSFET 
model was either to use its official Open source imple-
mentation for the SPICE3 simulator and accept all the 
quirks and shortcomings of SPICE3 or implement the 
model from scratch for the simulator of choice. 

Most commercial simulators at the time offered an API 
(e.g. [26, 29]) via which an external model could be 
implemented in C. Implementing a model with sev-
eral hundred parameters involves writing tens of thu-
osands of lines of C code. Derivatives of currents and 
charges must be manually implemented. This process 
is error prone and slow. Furthermore, due to different 
APIs a large part of the model has to be rewritten for 
each simulator.

Verilog-A solves these problems since the model has 
to be implemented only once and the implementation 
can then be used by all simulators supporting Verilog-
A. ADMS was developed as a tool that compiles Verilog-
A into a model utilizing the C API of a selected simula-
tor. After defining a new ADMS backend tailored to a 
specific simulator one can compile arbitrary Verilog-A 
models (within the limitations of ADMS) for that simu-
lator. The process of compilation with ADMS is fairly 
slow. For a modern CMC model it can take more than 
a minute (e.g. for PSPv103 [42]). The generated code 
must be compiled (usually with a C/C++ compiler) and 
linked either statically with the simulator (e.g. Xyce 
[36]) or into a dynamic library that can be loaded by 
the simulator on-demand (e.g. Spectre [26], Ngspice 
[33], Gnucap [34]).

ADMS itself is implemented in C utilizing the Glib li-
brary [31]. The compiler operates by parsing the 
Verilog-A code and representing it in the Extensible 
Markup Language (XML) [30]. The specifications for the 
code generator (backend) are defined in XSLT, a sub-
set of XSL [32], which is a language for representing 
XML document transformations. Models generated by 
ADMS are approximately 20% slower that hand-coded 
models [28].

Over the years ADMS has been used as the only avail-
able Verilog-A solution for compact modelling in Open 
source simulators like Ngspice [33], Gnucap [34], Quc-
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sator [35], and Xyce [36]. Of all the listed simulators 
Xyce is the most advanced one with the best ADMS 
support. Nevertheless its ADMS integration has many 
limitations [37]. CMC models can be handled by ADMS 
after applying some manual modifications to the mod-
el (e.g. [38]).

ADMS is no longer being developed by its author. De-
velopment has been taken over by the Qucs project 
[39]. Contributions to the Git repository since 2017 are 
scarce and have ceased in 2022.

4.2 OpenVAF

OpenVAF [40] is a fairly recent development. It evolved 
from VerilogAE [41] whose primary purpose was to 
ease the process of model parameter extraction by 
retrieving the model equations from Verilog-A code. 
OpenVAF translates Verilog-A into a dynamic library 
with the help of the LLVM library [47]. LLVM emits high-
ly optimized machine code and is generally used for 
implementing compilers. The resulting dynamic library 
interfaces with the simulator via the Open Source De-
vice Interface API (OSDI API) [46].

Internally OpenVAF translates Verilog-A code into an 
abstract syntax tree (AST). Then it performs several 
transformations in the steps that follow. The first step 
resolves undefined references to other parts of the 
code to produce high-level intermediate representa-
tion (HIR). HIR is further processed by constructing a 
control flow graph, thus defining the execution order 
of the statements. Symbolic derivatives of expressions 
with Verilog-A operators ddx and ddt are computed to 
be later used during the construction of the Jacobians 
and module’s output variables. The result of HIR pro-
cessing is the medium level intermediate representa-
tion (MIR). From MIR the LLVM intermediate represen-
tation (IR) is generated. IR is a high-level abstraction 
of the machine code. LLVM performs several low-level 
optimizations on IR before emitting machine code for 
the target platform.

The resulting code is very efficient and faster than the 
code generated by an ordinary C/C++ compiler from 
ADMS output. OpenVAF supports a significant part of 
the Verilog-A specification and can compile all of the 
CMC models without any manual modifications. There 
are some limitations, though. The compiler does not 

Table 2: Simulation runtimes for various models (taken from [42]). Builtin devices defined in C/C++ are denoted by a 
dash in the compiler column.

Simulator Free Compiler/built-in t [s] Comment
HICUM/L2v2p4p0 characteristic
Ngspice yes OpenVAF 9.16
Ngspice yes - 14.64 slow implementation
Xyce yes ADMS 36.42 strict convergence checks
Xyce yes - 26.56 strict convergence checks
ADS no proprietary 8.63
ADS no - 7.01
Spectre no proprietary 52.61
Spectre no - 25.33
BSIMSOI 4.4.0 characteristic
Ngspice yes OpenVAF 8.47
Ngspice yes - 7.98 manually optimized model
BSIMBULK 106.2 characteristic
Ngspice yes OpenVAF 2.08
Ngspice yes ADMS 3.38
BSIMBULK 106.2 transient
Ngspice yes OpenVAF 9.47
Ngspice yes ADMS 13.70
PSP 103.8 inverter
Ngspice yes OpenVAF 20.01
Ngspice yes ADMS 25.07
PSP 103.8 with ISCAS C7552
Ngspice yes OpenVAF 1200
Ngspice yes ADMS 1500
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support analog events, genvars, hidden states, Laplace 
filters, paramsets, and hierarchical modules. But since 
these features are rarely used in compact models the 
lack of them does not represent a significant shortcom-
ing at this point in time.

OpenVAF has replaced ADMS in Ngspice. It is also used 
by a free but closed-source simulator Spice Opus [48]. Fi-
nally, it is the core part of a novel Free software simulator 
VACASK [43, 44] for which the devices supported by the 
simulator are almost exclusively defined in Verilog-A.

Table 2 outlines the performance of OpenVAF-gen-
erated models with respect to builtin models (manu-
ally coded in C/C++), models generated by ADMS, and 
models generated by commercial compilers. These re-
sults are sparse and not sufficient to reliably determine 
the compiler that produces the fastest models, but 
nevertheless, they are a good indicator what one can 
expect from ADMS and OpenVAF.

Several Verilog-A compilers were tested by using the 
compiled HICUM model to compute the transistor’s 
characteristics. OpenVAF comes out close to the top, 
second only to the compiler in ADS [49]. Xyce with ADMS 
comes out as one of the slowest solutions. This can be 
largely attributed to more strict convergence checks in 
Xyce when compared to Ngspice. Ngspice performance 
on this test problem can be attributed to sub-optimally 
coded derivatives in the built-in HICUM model.

When compared to a mature and highly optimized 
manually written builtin model in Ngspice (BSIMSOI 
4.4.0) the OpenVAF-compiled model exhibits only 
6% slower performance. On the two BSIMBULK test 
problems (characteristic and transient) the ADMS-
compiled model is 45% to 60% slower than the one 
compiled with OpenVAF. This difference is significantly 
greater than the difference between models compiled 
by ADMS and manually coded models (models gen-
erated by ADMS are on average 20% slower). On the 
PSP inverter test problem the ADMS-compiled model 
is 20% slower than the one compiled with OpenVAF. 
The large test problem (ISCAS C7552) once again con-
firms the speed difference between models generated 
by ADMS and OpenVAF. These two benchmark results, 
the result obtained with the BSIMSOI model, and the 
fact that ADMS models are on average 20% slower than 
hand-coded models indicate that OpenVAF-generated 
models are roughly as fast as manually coded compact 
models.

4.3 Modelgen-Verilog

Modelgen-Verilog (MGV) [45] is a Verilog-AMS compiler 
for the Gnucap [34] circuit simulator. It has been in de-

velopment since 2023. The ultimate goal of the project 
is to implement full support for Verilog-AMS in Gnucap. 
Presently the compiler outputs C++ code that is tightly 
coupled with the Gnucap simulator. After compiling 
and linking the code a dynamic library is obtained that 
can be loaded by Gnucap. The dependence on Gnucap 
could be removed in the future as backends for other 
simulators get added.

At the present (June 2024) the compiler seems to be 
capable of processing some CMC models [50], albeit 
quite inefficiently since a compiled PSP103 model uses 
30 internal nodes, while its Verilog-A source code de-
fines only 17 internal nodes. Consequently, simulations 
with the generated devices are reportedly slow [50]. A 
comparison akin to that in Table 2 has not been pub-
lished yet.

A significant improvement in speed is expected from 
paramset support. Paramsets substitute most of the 
model parameters with concrete numbers upon which 
the expressions are simplified (constant folding) thus 
significantly reducing the computational burden of 
model evaluation. Further speedup could be obtained 
if the analog part of the compiler would implement op-
timizations akin to those in OpenVAF.

Modelgen-Verilog is a project whose ambitions are 
much bigger than the topic of this paper. Currently the 
compiler supports paramsets, analog events, hierarchi-
cal models, Verilog-A disciplines, discontinuities, and fre-
quency domain filters. These features are missing in the 
remaining two Verilog-A compilers. Due to its early stage 
of development not many optimizations have been ap-
plied yet and there is a lot of room for improvement.

5 Free software/Open source simulators 
supporting compact models in Verilog-A

Table 3 gives a concise overview of the Free software/
Open source analog circuit simulators that support 
compact models defined in Verilog-A. Note that the 
term Free software cannot be applied to Ngspice be-
cause of its license. Despite this Ngspice is still Open 
source and parts of it are Free software.

Core size of a simulator is the size of the simulator’s 
source code excluding code that defines the device 
models. Simulators usually offer some kind of param-
eter sweep which is significantly more efficient than 
repeatedly running the simulator with a modified in-
put file. Although a sparse linear solver is almost a must 
for a circuit simulator, not all simulators use one (e.g. 
Qucsator).
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The process of simulation can be divided into two 
steps that in general must be repeated multiple times 
in order to complete a circuit analysis: evaluation of 
the circuit’s components and solving a system of lin-
ear equations. Both steps can take advantage of paral-
lel processing which can speed up the simulation and 
facilitate the simulation of circuits that are too big to 
fit on a single computer. Not many simulators exploit 
parallelism (only Xyce and partly Ngspice).

Finally, for a simulator it is important to provides basic 
SPICE device models (e.g. Gummel-Poon BJT, MOSFET 
levels 1-3, and 6, JFET, and MESFET). Mature simulators 
provide these device models (Xyce, Ngspice, Gnucap) 
while newer ones do not (VACASK, Qucs).

In the remainder of this section a more detailed de-
scription will be given for each one of the mentioned 
simulators.

5.1 Xyce

Xyce [36] is the most advanced of all the simulators 
listed in Table 3. Like all modern simulators, Xyce’s core 
separates the device models from analysis implemen-
tation which makes it possible to implement a new 
analysis without having to change the device models. 
The simulator is capable of accelerating computations 
via parallel computing. Numerical capabilities are pro-
vided by the Trilinos [51] suite of libraries that offer uni-
fied wrappers around various state of the art solvers 
(like KLU). Element evaluation, as well as, certain linear 
solvers can take advantage of parallel processing. The 
latter is efficient only for very large circuits. Xyce offers 

all the standard SPICE circuit analyses, as well as, har-
monic balance analysis.

Support for compact models in Verilog-A is provided 
by ADMS. The development team announced in 2022 
[52] that they intend to build their own Verilog-A com-
piler based on an in-house Python library for (symbolic) 
differentiation. Since then there has been little news re-
garding this subject. Currently ADMS in Xyce has many 
limitations [37], largely due to the nature of ADMS.

5.2 Ngspice

Ngspice [33] is the most commonly used Open source 
simulator. It is based on the original SPICE3f5 source 
code in C. The original source code has been signifi-
cantly extended and many bugs and shortcomings 
were fixed. One of these shortcomings was the original 
linear solver library of SPICE3 [55], which by now is no 
longer competitive. It has been replaced with the much 
faster KLU library [56].

Unfortunately, as is customary with all SPICE-based 
simulators, the models are tightly coupled with the 
circuit analyses. This makes it hard to add new types 
of analysis without making extensive changes to the 
large library of device models. Ngspice partly supports 
parallel evaluation of elements, either on multiple local 
CPU cores via OpenMP [53], or (for some elements) on 
a GPU via CUDA [54]. The linear solver, however, is not 
parallel.

Support for Verilog-A compact models was implement-
ed at first with ADMS. Recently, the OSDI API has been 

Table 3: Comparison of Free software simulators. Asterisk denotes a feature under development as of September 
2024.

Xyce Ngspice VACASK Gnucap Qucsator
Language C++ C C++ C++ C++
Core size (lines of code) 185500 63800 36700 28600 50300
Verilog-A CM support ADMS OpenVAF OpenVAF MGV or ADMS ADMS
Operating point (OP) yes yes yes yes yes
Small-signal AC yes yes yes yes yes
Transient yes yes yes yes yes
Small-signal noise yes yes yes no yes
Harmonic balance yes no no* no yes
Analyses supported by sweep all OP all OP all
Sweep depth arbitrary 2 arbitrary arbitrary 1
Analysis/device separation yes no yes no no
Sparse solver yes yes yes yes no
Parallel evaluation yes yes no no no
Parallel solver yes no no no no
SPICE devices yes yes no* yes partly
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implemented which in turn makes it possible to use 
OpenVAF-generated models.

5.3 Gnucap

Gnucap [34] has a long history dating back to 1982. 
Since then it has been in slow, but steady develop-
ment. The set of circuit analyses is fairly limited (only 
operating point/DC sweep, AC, and transient analyses 
are supported). The separation between the device 
models and the analyses is not complete as the models 
still have separate matrix loading functions for the time 
domain and for the frequency domain. This is alleviated 
by the fact that Gnucap’s models are mostly generated 
with Modelgen, Gnucap’s own model generator, not 
to be confused with Modelgen-Verilog. Models gen-
erated by both model generators are accessed by the 
simulator through the same API. Another shortcoming 
of Gnucap is its linear solver which is outdated. On the 
bright side, the solver offers functionality not available 
in other Free software circuit simulators because it can 
do partial solves of matrices when only a part of the 
matrix changes.
Support for Verilog-A compact models is provided by 
ADMS. Recently, development of a novel Verilog-AMS 
capable compiler for Gnucap has started (Modelgen-
Verilog [45]). The compiler already supports a large 
subset of Verilog-AMS.

5.4 Qucsator

Qucsator [35] is a fairly new simulator whose begin-
nings date back into early 2000s when it started as the 
Quite universal circuit simulator (Qucs) project’s own 
simulator. The simulator offers operating point/DC, AC, 
S-parameter, transient, and harmonic balance analysis. 
The models are tightly coupled with the analyses so 
implementing a new kind of analysis generally means 
all device models need to be modified, too. A major 
shortcoming is the fact that the simulator does not use 
a sparse linear solver. Instead an ad-hoc dense matrix 
solver is used, which makes the simulator impractical 
for anything but the smallest of circuits. Support for 
Verilog-A compact models is provided by ADMS.

5.5 VACASK

VACASK [43, 44] is a recently published simulator. It 
separates the models from the analyses thus simplify-
ing the implementation of analyses by avoiding chang-
es in device models. VACASK uses a state of the art lin-
ear solver (KLU).

The simulator offers operating point/DC, AC, small-sig-
nal transfer function (DC and AC), transient, and noise 
analysis. Harmonic balance analysis is currently under 

development, as well as, support for SPICE builtin de-
vice models. VACASK supports the OSDI API so that Ver-
ilog-A compact models compiled with the OpenVAF 
compiler can be used. In fact, most of the simulator’s 
device library is implemented in Verilog-A. An excep-
tion to this are independent sources, linear controlled 
sources, and inductive couplings. These elements can-
not easily be implemented in the Verilog-A subset sup-
ported by OpenVAF if one wants them to provide the 
same kind of interface as SPICE3 models do. 

VACASK is in early stages of development. Preliminary 
benchmarks indicate that in single CPU mode it runs 
faster than Xyce, Gnucap, and Ngspice [43].

6 Conclusion

Verilog-A is the analog subset of Verilog-AMS. Over the 
years Verilog-A has become the de-facto standard for 
distributing compact models of semiconductor devic-
es. Models implemented in Verilog-A need not specify 
any derivatives which makes the models significantly 
shorter and the coding process less errorprone. Verilog-
A focuses on the equations describing the behavior of 
a circuit element. This reduces the size of a compact 
model by a factor up to 6 compared to SPICE3 compat-
ible C code. Verilog-A compilers can significantly speed 
up the execution of a model by applying optimizations 
before the final machine code is emitted. The resulting 
model can be as fast as the hand-coded version of the 
model.

Verilog-A compilers are supplied with most commer-
cial simulators. The available alternatives in the realm 
of Free software are much more scarce. Simulator de-
velopers can choose between three alternatives. ADMS 
is an old solution that requires manual intervention in 
the model code. OpenVAF is a modern compiler that 
produces fast models. Both alternatives support only a 
subset of Verilog-A. OpenVAF is more suitable because 
it is capable of compiling all public CMC models with-
out modifications. The third alternative (Modelgen-
Verilog) is a Verilog-AMS compiler that already sup-
ports a large part of the standard despite being in the 
early stages of development. It is capable of compiling 
Verilog-A compact models, but the resulting code is 
somewhat inefficient. Unfortunately its interface cur-
rently supports only the Gnucap simulator.

Several Open source and Free software simulators sup-
port Verilog-A, ranging from the most advanced one 
(Xyce), through SPICE3-based Ngspice, and newer sim-
ulators like Qucsator, Gnucap, and VACASK. All of these 
simulators support compact models defined in Verilog-
A via one of the three mentioned alternatives.
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