
29

Original scientific paper

 MIDEM Society

Analog Circuit Topology Representation for
Automated Synthesis and Optimization
Žiga Rojec, Jernej Olenšek, Iztok Fajfar

University of Ljubljana, Faculty of Electrical engineering, Ljubljana, Slovenia

Abstract: For several decades, computers have helped analog designers with circuit simulation and evaluation. To further simplify and
speed-up designer’s work, novel methods are being introduced that help to fine-tune numerical parameters to meet the performance
criteria. With a lack of capable engineers, a shortage of specific knowledge or time to design an analog building block, software
for fully automated synthesis of both topology and parameters is becoming crucial. Most research in this field is based on circuit
modifications according to evolutionary principles of survival of the fittest. One of the challenges of the design of appropriate software
is a representation of a circuit topology that will allow topology modifications with the smallest possible computational effort. Many
existing solutions suffer either from the uncontrolled growth of the size of the circuit (so-called bloat) or from the limitation of the
topology structure to a set of predefined blocks. In this paper, we discuss an analog circuit topology representation in a form of a
binary upper-triangular matrix that is both bloat safe and offers a large solution space. We describe the basic structure of the matrix,
the redundancy phenomena of logical elements, and the translation of the matrix representation to a regular SPICE netlist. We use an
evolutionary algorithm to evolve the topology matrix and a classical parameter optimization algorithm to tune the circuit parameters.
Based on a high-level circuit definition and a fixed building-block bank, our topology representation technique showed success in a
fully automatic synthesis of passive circuits. We demonstrate the ability to automatically discover a passive high-pass filter topology.

Keywords: Automated synthesis, analog circuits, computer-aided design, evolutionary algorithms

Zapis topologije analognega električnega vezja za
namen avtomatske sinteze in optimizacije
Izvleček: V procesu načrtovanja analognih električnih vezij računalniki že desetletja sodelujejo kot orodje za simulacijo ter evalvacijo.
V pomoč pri delu razvijalca so že sedaj na voljo orodja, ki so sposobna avtomatično optimizirati numerične parametre vezja in s tem
doseči določene kriterije delovanja. Zaradi pomanjkanja inženirjev, znanja in časa za razvoj analognih sklopov je smiselno razmišljati
o programski opremi, ki bi bila zmožna ne samo izbrati primerne parametre za doseganje zahtevanih lastnosti temveč tudi sestaviti
ustrezno topologijo. Večina dosedanjega dela na tem področju temelji na spreminjanju posameznih delov topologij po evolucijskih
principih. Eden od glavnih izzivov pri razvoju tovrstnega orodja je računalniška predstavitev topologije vezja na način, ki bo omogočal
računsko čim manj zahtevno spreminjanje topologije. Ena od slabosti nekaterih obstoječih rešitev je velika možnost nekontrolirane
rasti sheme vezja preko vseh meja med iskanjem rešitve (t.i. napihovanje, angl. bloat), druga pogosta pomanjkljivost pa je vnaprejšnja
omejitev strukture topologije. V tem članku predlagamo zapis predstavitve topologije analognega električnega vezja v obliki binarne
zgornje trikotne matrike, ki omogoča ogromen iskalni prostor, hkrati pa zagotavlja imunost pred razlezenjem med postopkom
iskanja. Opisujemo osnovno strukturo primernega matričnega zapisa, fenomen redundance logičnih elementov ter razložimo
pretvorbo matrike v standarden zapis vezja (angl. netlist) primeren za obdelavo v simulatorju SPICE. Matriko nato spreminjamo s
pomočjo posebnega evolucijskega algoritma, številske parametre vezja pa z eno od obstoječih metod za numerično optimizacijo.
Primernost zapisa za popolnoma avtomatično sintezo analognega vezja smo preizkusili na primeru razvoja pasivnih vezij. Na podlagi
visokonivojske zahteve ter vnaprej znane knjižnice možnih električnih elementov je algoritem sestavil pasivni visokoprepustni filter.

Ključne besede: Avtomatska sinteza, analogna vezja, računalniško-podprto načrtovanje, evolucijski algoritmi

* Corresponding Author’s e-mail: ziga.rojec@fe.uni-lj.si

Journal of Microelectronics,
Electronic Components and Materials
Vol. 48, No. 1(2018), 29 – 40

1 Introduction

The designing of an analog circuit is a demanding task
even for a skilled analog designer. Due to constantly in-

creasing time-pressure, lack of experienced engineers
and growing industry needs, designers more and more
often use computers to support the design process.

30

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

Computers and dedicated software have been used to
aid the circuit designers since the introduction of SPICE
[1]. Soon, designers started to use various mathemati-
cal methods to optimize circuit parameters to reach or
even overcome the desired performance (e.g., [2], [3],
[4], [5]). However, the optimization of the parameters
alone is often not enough to meet the required objec-
tives. In that case, a designer needs to rearrange the
topology, which means that the parameters have to
be optimized again. The recent advances in the field of
analog circuit computer-aided design have to do with
the combined automatic parameter optimization and
the topology calculation of a desired circuit [6].

Majority of the topology search methods use some kind
of evolutionary computation, and some early examples
of the approach are IDAC [7], OASYS [8], OPASYN [9]
and DARWIN [10]. Those early approaches were based
on a random selection of topology parts from a pre-
defined library. Consequently, the topology structure
was fixed in advance, which seriously limited the size
of the solution space. However, the invention of ge-
netic programming (GP) by Koza et al. [11] has mainly
removed this limitation and opened door for the first
serious attempts in automated topology design. GP is
an idea of automated development of a computer pro-
gram using an evolutionary algorithm. Each program
is presented by a tree-like structure, where branches
and leaves represent various computer instructions.
Koza already proposed this method for automated an-
alog circuit synthesis, where a computer program was
built using instructions for setting up a circuit topol-
ogy [12]. One of the main problems of GP is so-called
bloat, a phenomenon of an uncontrolled growing of a
program tree. Lohn and Colombano [13] proposed a
linearization of the circuit-building instructions, which
inherited both advantages and disadvantages of stan-
dard GP. A binary or switching rectangular topology
matrix representation was proposed by Györök [14].
His proposal, however, did not include further repro-
duction mechanisms and was not designed for fast
checks of a single terminal connectivity. Gan et al. [15]
suggested an undirected weighted graph representa-
tion where graph vertices represent component nodes,
while component types and values are represented by
branch weights. The idea results in a relatively efficient,
lightweight circuit representation, but is limited to ba-
sic passive two-terminal components.

All the above-mentioned issues mainly stem from an
inappropriate representation of a circuit topology. It is
therefore vital for the successful computerizing of the
analog circuit synthesis to have a suitable topology
representation, which is the main focus of our paper.

The structure of this paper is as follows. In the following
section we discuss the main idea behind of our analog
circuit representation and its basic properties. We also
present algorithms that allow conversion to a SPICE
netlist. Later, in Section 3 we describe the algorithm
used to alter and evolve the circuit topology in such
a way that a solution fits the high-level requirements
given at the beginning. In Section 4, we show that our
approach is indeed successful in synthetizing an ana-
log circuit from scratch.

Figure 1: The main idea behind our analog circuit to-
pology synthesis tool.

2 Circuit representation technique

Figure 1 summarizes the concept of our approach. Cen-
tral to the synthesis is an evolutionary algorithm that
searches for an optimal topology, augmented with an
additional parameter optimization method. The algo-
rithm builds the population of circuits using the ele-
ments and sub-circuits from the library according to
the rules that we describe in this section. During the
evolution and optimization process, a specified high-
level circuit definition serves as a cost function, which
the algorithm tries to minimize. The whole process can
be arbitrarily biased with a starting circuit.

There are several requirements that we have to consid-
er in order to obtain a circuit representation suitable to
be used in the above described process. The represen-
tation should…
… lend itself to computationally inexpensive modifi-

cation of topology;
… be able to prevent uncontrolled growing of a cir-

cuit;
… provide a large search space;
… allow simple detection of forbidden or unwanted

connections.

Evolutionary
algorithm

and
parameter

optimization

High-level
circuit definition

Elements/sub-
circuits library

SOLUTION

2.8 uF

2.8 uF

870� 154�

90 k 2.5 uF

VoutVin

4x

4x

… …

(Starting circuit)

Vin Vout

31

2.1 The Topology matrix

Probably the most obvious way of decoding a circuit
topology is an upper-triangular square binary matrix as
shown in Figure 2. The matrix has one row and column
assigned to each one of the terminals of all of the ele-
ments from the library as well as all the possible main
terminals such as GND, Vin, Vout and similar. The size of
the matrix does not change during the evolution. Rath-
er, an element is connected or disconnected from the
circuit by setting the corresponding matrix elements to
one or zero. Specifically, in order to connect two termi-
nals together, we put a logical one to a place where a
row representing the first terminal intersects the col-
umn representing the second terminal. By definition,
every terminal is connected to itself. That is why the
matrix has all ones on the principal diagonal. That way,
we can form any possible topology using the elements
from the library.

It is obvious that an element is excluded from the final
circuit when none of the rows or columns belonging to
that element contain any ones (except for the diago-
nal elements, which connect each terminal to itself).
Notice, however, that there are other cases that also
exclude an element from the circuit. For example, an
element is also excluded when only one of its terminals
is connected elsewhere or all of its terminals are short-
connected together.

Figure 2: An example of a topology matrix, its main sec-
tors, and the actual circuit that the matrix encodes.

Notice that the topology matrix contains several sec-
tors. The first one is a so-called Inner-connections
sector, where all connections between elements and
sub-circuits are defined. The second one, the Outer-
connections sector, contains all the connections to the
outside world. It is easy to detect certain forbidden con-
nections in this sector. Namely, there should only exist
a single logical one in each row; otherwise, some outer
terminals would be connected together, which is non-
sense from the design point of view. There is one more
sector (the Forbidden sector), within which no connec-
tions are allowed. The reason is the same as before—
the outer terminals should not connect to each other.
It is very important that we are able to detect some of
these nonsense situations easily even before we start a
computationally expensive circuit simulation.

2.2 Redundant connections

Consider the Inner-connections sector of the topology
matrix depicted in Figure 2. It turns out that exactly the
same topology can be represented by four different en-
coding patterns as shown in Figure 3. Namely, as soon

Vin Vout

R1 R2 C1

�

�

�
�

�

�

�

�
�

� �

�

�

�

�

Inner-connections

O
uter-connections

R1
R2

C
1

R1 R2

C1

Forbidden sector
without connections

R1 R2 C1

�

�

�
�

�

�

�

�
�

� �

�

�

�

�

R1 R2 C1

�

�

�
�

�

�

�

�
�

�

�

�

�

�

R1 R2 C1

�

�

�
�

�

�

�

�
�

� �

�

�

�

R1 R2 C1

�

�

�
�

�

�

�

�
�

�

�

�

�

�

b)

c) d)

a)

Vin VoutR1 R2

C1

Figure 3: Four different Inner-connections parts of the
topology matrix that represent the same T-type circuit.

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

32

as we connect two different terminals to a third termi-
nal, we automatically connect the first two terminals
together as well. We can observe a similar phenom-
enon in the genetic code of living organisms, referred
to as degenerate genetic code [16]. Code degeneracy is
important in preserving genotypic diversity as differ-
ent genotypes (matrix encodings in our case) can rep-
resent the same phenotype (a resulting circuit in our
case). It is however crucial to have all the connections
(even the redundant ones) encoded in the matrix when
it comes to creating a netlist to be used by a simula-
tion software like SPICE. By creating a fully redundant
matrix, terminals are identified with all joint nodes. As
seen on Figure 3 d), all logical fields marked grey be-
long to a joint node between R1, R2 and C1. The first
step of building a SPICE netlist from a topology matrix

Input:
Topology matrix

Output:
Fully redundant
topology matrix

Step 1: Step 2: Step 3:
Repeat until no new logical element can be set:

x

y

Figure 4: A procedure of finding all the redundant logical ones to build a full topology matrix.

is therefore filling the matrix with all the redundant
connections.

The basic idea behind the procedure of filling the ma-
trix with all the redundant connections is to find all the
incomplete rectangles (formed by exactly three logical
ones in any three of their four vertices) and fill the re-
maining vertex with a logical one as well. The algorithm
that implements this reads as follows (see also Figure
4):

Repeat
(check up and right, insert diagonally) Scans the ma-
trix along its diagonal from left to right and looks for
a missing logical one in the direction (x, -y). This finds
all the rectangles with one existing vertex placed verti-

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

33

cally and the other horizontally from a certain diagonal
element.

(check right and diagonally, insert up) Scans the matrix
along its diagonal from right to left and looks for a
missing element in the direction -y. It finds all the rec-
tangles with two existing vertices in the same column.

(check up and diagonally, insert right) Scans the matrix
along its diagonal from left to right and looks for a
missing element in the direction x. It finds all the rec-
tangles with two existing vertices in the same row.

Until no new logical one was inserted

2.3 Parameter vector

Apart from the circuit topology, we also need to en-
code the numerical parameters such as resistances,
capacitances, or transistor gate widths and lengths, in
order to fully describe a circuit. We simply store those
parameter values in a plain one-dimensional real vec-
tor, which leaves us with a complete genotype of a cir-
cuit, represented by a topology matrix and parameter
vector.

2.4 Matrix-to-netlist conversion

Since we will analyze the circuit using numerical SPICE
models, we need to translate the topology matrix to-
gether with the parameter vector into a SPICE netlist.
The netlist has a simple syntax as shown on the right of
Figure 5. Each line starts with the name of an element,
the first character of which defines the element or
sub-circuit type. The number that follows is simply the
number of the element if there are more of the same
type. Following the element name, there are the num-
bers of the nodes in the circuit to which the element
is connected. At the end of each line there is usually a
numerical parameter of the element or a model name.

Once we have calculated a fully-redundant topology
matrix, there is not much work left to do to build a
netlist. We demonstrate the whole procedure on the
case shown in Figure 5. Let us first identify the node
number of terminal Vout. The terminal is represented by
the diagonal logical one in the bottom right corner of
the matrix, pointed to by the darkest gray arrow. From
this point, we search for the topmost logical one within
the same column. The row index of this logical one rep-
resents the node number to be used in the netlist. We

�

vout
vin R1 R2

C1

C2= 220 nF

= 220 nF

= 800 = 800

Rload= ��

�

�

Vsupp

Vsupn

subcircuit
HOT_CIRCUIT

Test-on-top circuit

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

N
od

e n
um

be
r

*G_0_I_0_subckt.cir
* pins: GND Vin Vout
.SUBCKT HOT_CIRCUIT 12 5 10 vsupp vsupn
*R_0 1 1 800.0
*R_2 3 3 800.0
R_4 5 6 800.0
R_6 6 8 800.0
C_8 6 10 2.2e-07
C_10 8 12 2.2e-07
*C_12 13 13 2.2e-07
*C_14 15 15 2.2e-07
x_16 8 10 vsupp vsupn 10 LM741N
.ends

Fully-redundant topology
matrix

SPICE netlist of encoded circuit topology01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22
� � � � � � � � � � ��� ��� ����

�����

Test-on-top circuit
(input signal generator, power

supply, load, etc.)

Figure 5: The conversion from a topology matrix to a netlist.

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

34

repeat the same procedure for each and every terminal
contained in the matrix. In Figure 5, there are two ad-
ditional arrows indicating the node number identifica-
tion for terminals Vin and ground although all the termi-
nals follow the same procedure.

It could happen that a diagonal logical one is the only
non-zero logical element in the column. In that case,
the node number assigned to the terminal is simply the
row number of that diagonal logical one (i.e., the left
terminals of R0, R2, C12 and C14). The matrix, netlist, and
topology in Figure 5 represent a Sallen-Key active LP
filter. Notice that not all available elements are used in
the resulting topology. We can see from both the ma-
trix and the netlist that four of the nine available build-
ing blocks have their terminals connected together.
This automatically means they are excluded from the
topology. In the netlist, we commented out the exclud-
ed elements using an asterisk (*) to save Spice some
unnecessary computation.

Notice that the resulting circuit is coded as a sub-circuit in
the netlist. During the evaluation process, this sub-circuit
is encapsulated in a special test circuit providing the nec-
essary power supplies, input signals, loads, and measure-
ment points as seen in the bottom right of Figure 5.

3 Search algorithm

Up to this point, we have explained how we encode an
individual circuit (the genotype) and how we build a
netlist suitable for its simulation (the phenotype). We
are now ready for developing an evolutionary algo-
rithm that will evolve a circuit based on a specific fit-
ness specification. The algorithm is similar to the one
that we used in [17].

Evolution is a process that allows a biological population
to adapt to a given environment by means of change
in the heritable characteristics of individuals [18]. The
favorable changes mean more chance for an individual
of surviving in a particular environment. That way, the
population becomes better and better adapted to given
conditions. This simple and robust procedure is often
used as a means of global optimization [19], and we use
it in our work as well. For the purposes of this research,
we adapted the three basic evolutionary operators: se-
lection (survival of the fittest), crossover (reproduction,
also called recombination), and mutation.

3.1 Selection

The first step of an evolutionary algorithm is usually
selection of the fittest individuals that will take part in

crossover and/or mutation operations, thus producing
offspring. One of the standard methods of selecting
best individuals is so-called tournament selection. The
idea is first to chose a few individuals from the popula-
tions at random to be part of a tournament. The winner
of a tournament (the individual with the best fitness) is
chosen to participate in crossover or mutation. We can
easily adjust selection pressure by changing the tour-
nament size. Weak individuals have a greater chance to
be selected when the tournament size is smaller.

After we have obtained two winning individuals, we
decide between crossover and mutation as shown in
Figure 6. The decision is made randomly, based on a
given probability. It is not unlikely that, during crosso-
ver, we exchange two identical parts of genetic mate-
rial, which results in two offspring identical to their par-
ents. It turned out that it is beneficial to the algorithm
if we discard such offspring and repeat the genetic op-
eration before even evaluating the circuits.

Figure 6: Deciding between crossover and mutation.

Note that tournament selection chooses the best in-
dividual from a randomly created subset of individu-
als. Because of the random selection it might happen
that the fittest individuals are not selected at all and
therefore could not proceed into the next generation.
To prevent this kind of loss, we employ additional elit-

����������
���������

�������
�
��������

��������

�������
�
���������

��������

�������
�������

��������
��������

�������
������������
��������

��

�
�

���

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

35

ist selection to ensure that a certain number of the fit-
test individuals proceed to the next generation even
though they have not been selected during any of
tournaments.

3.2 Crossover

The basic idea of our crossover technique is closely
connected with the encoding type of an upper-trian-
gular matrix. Recall that each logical one on a matrix
diagonal corresponds either to a pin of an element or
an outer connection (see Figure 2). Each logical one on
the right of a particular diagonal element connects the
pin to the corresponding pin on its right (see the row
of the elements above the matrix in Figure 2). Similarly,
each logical one above a particular diagonal element
connects the pin to the corresponding pin on its left.
As soon as we delete all logical ones from both, the row
and column intersecting the diagonal element in ques-
tion, we remove every information about how that par-
ticular pin is connected with the rest of the circuit. Our
crossover operator exchanges information about the
connections of any number of pins between one and
four where the number of exchanged pins is randomly
selected. Figure 7 shows examples where one (N = 1)
and three (N = 3) pins are exchanged. The parent on the
right is deliberately shown as a full upper-triangular
matrix to better illustrate the effect of crossover.

Figure 7: Topology matrix crossover examples ex-
changing information about one (N = 1) and three (N =
3) pin connections.

3.3 Mutation

Mutation is a random modification of genotype of a
selected individual. Our implementation of a muta-
tion operator randomly changes circuit connections in
three different ways. It either removes, moves, or adds
a logical one to a connection matrix. In case when a
mutation operator is selected to be carried out upon
the selected individual, one of these three mutation
variants is performed based on an evenly distributed
random choice.

3.4 Parameter vector optimization

Apart from the circuit topology, the circuit parameters
have to be optimized during the evolution as well. We
use the PSADE global optimization algorithm [2] to
perform this task. PSADE is a hybrid method combin-
ing simulated annealing and differential evolution. The
method was proven successful on a class of circuit opti-
mization problems, so we use it to alter and additional-
ly optimize the evolving circuit numerical parameters.
Parameter optimization is however computationally
expensive and optimizing each and every circuit in the
generation would make the process unwieldy. It turned
out that applying parameter optimization every 10th
generation on three randomly chosen circuits (from
the 10 best ones in the current population) is quite
beneficial to the evolutionary process.

3.5 Circuit evaluation

One of the most important aspect of every evolution-
ary process (and indeed any optimization) is evaluation
of the performance (a.k.a. fitness) of the members of
the population. There are few general guidelines as
how to do this and a designer mainly has to rely on
his or her experience. The goal of our research was to
synthetize a passive analog high-pass filter, with –3 dB
starting pass band frequency of 8 kHz and the deep-
est possible damping in stop-band but not higher than
–40 dB. We selected four main performance criteria:
ripple, damping, fpass, and gain as illustrated in Figure
8. Filter optimization penalty functions are usually
designed with a fixed frequency domain structure [3]
(i.e., the frequency ranges defining the ripple, dump-
ing, and gain measurements are fixed during the op-
timization). When evaluating the frequency response,
the real damping (or slope) is measured correctly only
when fpass is matched to wanted frequency (Figure 8
top). Some evaluated filters might have a proper shape
overall, but at wrong frequency. This does not neces-
sary mean that damping is wrong but rather that fpass
is off.

N=1

N=3

off
sp

rin
g

1
off

sp
rin

g
2

pa
ren

ts
Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

36

Frequency-fixed fitness detection works well for pa-
rameter optimization with a fixed topology. In our evo-
lution procedure topology changes, but parameters
are fixed until the PSADE triggers. With filters, mainly
the topology (the order and type) defines the shape of
frequency response, and parameters define bands [20].
This is why we allow fpass to be off during the evolution,
but measure other properties correctly (Figure 8 bot-
tom). Doing so, we do not a-priori discriminate circuits,
whose fpass is off, but have other qualities.

Figure 8: Frequency-Fixed versus Frequency-Flexible
fitness function.

We calculate the overall fitness of the circuit using the
following cost function:

 0.5 , 0.5

0, 0.5

ripple dB ripple dB
r

ripple dB
− >

=  ≤
 (1)

 40 , 40

0, 40

dB damping damping dB
d

damping dB
− <

=  ≥
 (2)

10 10 log 8 log off passf kHz f= − (3)

 0 g dB gain= − (4)

1 2 3 off 4

cost w r w d w f w g= + + + (5)

where r is ripple larger than 0.5 dB in the pass band,
damping is d, smaller than -40 dB in stop band, foff is
a difference between fpass and 8 kHz and g is the gain
objective. After a number of initial experiments we em-
pirically set the weights to be w1 = 1, w2 = 20, w3 = 7, and

w4 = 10. In addition, we weight every individual result-
ing in an unsuccessful measurement or simulation with
factor of 103 * Nnosucess, and we weight every individual
with a forbidden short-circuit detected already in bi-
nary topology matrix with 2 * 104 * NSC, where NSC is a
number of detected short-circuits and Nnosucess is a num-
ber of unsuccessful measurements and analyses.

All measurements were made using the PyOPUS Py-
thon library for circuit optimization, which enables si-
multaneous circuit evaluation on multiple processing
cores [21]. Simulations were executed using HSpice.

3.6 The evolutionary algorithm

Figure 9 summarizes the complete evolutionary algo-
rithm used in our research. As the first step, we create
an initial random population of topology matrices and
parameter vectors. This is done simply by creating to-
pology matrices with evenly distributed logical ones
through the whole matrix. Before entering the main
optimization loop, we evaluate the initial population
and sort the individuals according to their fitness. After
performing the genetic operations of selection, crosso-
ver and mutation, we evaluate the newly generated in-
dividuals. If at least one of them fits the design criteria,
we stop the procedure. Otherwise, if the generation
number is divisible by ten, we randomly select three of
the best ten individuals and run the PSADE optimiza-
tion algorithm on their parameter vectors.

Figure 9: The evolutionary search procedure.

4 Results

In this section, we show the results of two separate
runs of our evolutionary algorithm using identical al-
gorithm parameters but with different fitness func-

f[Hz]

|A|[dB]

fpass

ripple

damping

gain

Frequency-Fixed Fitness Function

f[Hz]

|A|[dB]

fpass

ripple

damping

gain

Frequency-Flexible Fitness Function

foff

Initial population

EVALUATION

SELECTION

CROSSOVER/
MUTATION

OFFSPRING
EVALUATION

CRITERIA
MET?END

���� ����� Gen. num.
divisible by

10?

����

�����

Parameter optimization on
best individuals

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

37

tions. We included six resistors and six capacitors in the
element library to be used by the algorithm. The initial
parameters were randomly chosen for every circuit in
the initial population ranging from 1 kΩ to 10 MΩ for
the resistors and 1 pF to 10 µF for the capacitors. The
same values were also used as the constraints for the
PSADE parameter optimization. The population size in
both runs was set to 400 individuals. The parameters
are summarized in Table 1.

Table 1: Evolution parameters.

Population size 400
Tournament size 3
Elite size 8
Crossover probability 0.8
Mutation Probability 0.2

In the first run, we wanted to evolve a high-pass filter
with at least –40 dB damping in the stop-band, at least
one decade below fpass. The evolution produced a solu-
tion after only 430 generations, which took about an
hour using a cluster of 10 Core i5 Linux machines. We
can observe the resulting circuit in Figure 10 (1) and its
frequency response on Figure 11 (1). The resulting RC
filter is comprised of three capacitors and four resistors.
Its frequency response shows a low (almost zero) ripple
in pass band, 0 dB gain and –40 dB/decade slope. There
is a return point from –50 dB towards –40 dB at 0.9 kHz.

In the second case, we required steeper damping of –60
dB. In this case, the evolution reached the maximum
limit of 2000 generations, which took approximately
five hours on the same hardware. The resulting circuit
(the circuit in Figure 10 (2) with the values in brackets)
met most criteria except for fpass, which settled at 1 kHz
instead of 8 kHz. The reason for this failure, however,
was not the evolutionary algorithm itself but rather
the internal limit on the maximum number of itera-
tions of the PSADE parameter optimization algorithm,
which was set to 105. This internal limit was set in order
to keep each parameter optimization run reasonably
short during the topology evolution. After we have run
the additional PSADE optimization on the final topol-
ogy, the starting frequency of the pass-band moved
to the desired value (cf. the plots of the second run
in Figure 11). It took PSADE additional 5·106 iterations
to fine-tune the circuit parameters. The final circuit is
comprised of five capacitors and four resistors, which
form an RC filter with a similar frequency response as
in the first case, except with better damping (Figure
10 (2) and Figure 11 (2) – “fine-tuned”). Similarly to the
first case, there is a return point from -61 dB towards
-55 dB, which slightly violates the damping criterion.

This problem could be solved simply by increasing the
weight factor assigned to damping in the cost function.

Figure 10: Automatically evolved filter topologies and
their numerical parameters when requiring dumping
of –40 dB (1) and –60 dB (2). With second circuit, param-
eters given in brackets are the raw algorithm solution
and fine-tuned ones are given above.

Note that both topologies shown in Figure 10 are the
raw output of the algorithm. An analog human design-
er will still see some obvious (topological) redundan-
cies like, for example, the serially connected resistors R3
and R4 in the second filter.

4.1 A Comparison to other existing approaches

In this subsection, we compare our approach to other
known analog circuit topology representations for
evolutionary algorithms found in the literature. A brief
glance at Table 2 reveals that our matrix representation
technique surpasses the competitive approaches in
several categories.

Representations used by Koza [12] and Lohn [13] suffer
quite seriously from bloat that manifests itself in many
redundant circuit branches, which makes it difficult to
control the evolution. We have eliminated this problem
because a connection matrix cannot change its size
during the evolution. Furthermore, we limit a number
and the types of allowed components by specifying a
pre-defined component library to be used by the algo-

C4 = 7.8 �F

C5 = 2.6 �F

C1 = 38 nF C2 = 11 nF C3 = 43 pF

R3 = 680 k

R4 = 300 k

R2 = 41 kR1 = 1.0 k

Vout

Vin

(1.1 k � (37 k �

(780 k �

(330 k �

(320 nF) (110 nF) (380 pF)

(9.3 �F)

(620 nF)

�

�

VoutVin

C1 = 0.5 nF

R1 = 24 k

R2 = 75 k

C2 = 35 nF
R3 = 370 k

R4 = 120 k

C3 = 22 pF

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

38

rithm. The only redundancies that emerge in our case
are some parallel/serial repetitions of same-type com-
ponents.

With Koza [12], Lohn [13], and Gan [15], the basic build-
ing blocks are limited to two-pole components. Al-
though the methods allow the usage of transistors, one
of their three terminals should always be fixed before-
hand to one of the outer connections. However, with
our matrix representation it is possible to use building

blocks having an arbitrary number of terminals, which
vastly increases the circuit search space.

The approach proposed by Kruiskamp [10] is limited
to combine 24 predefined topologies which is hardly
practical for real-life problems. With our represen-
tation, there is no limit on the type and size of the
evolved topology other than the one imposed by the
size of a connection matrix and a pre-defined compo-
nent library.

Koza [12], Lohn [13] and Györök [14] do not suggest
any routine for short-circuit checks directly on the cir-
cuit representation level. Our approach incorporates
efficient checking of a connection matrix. Configura-
tions resulting in a short-circuited topology are exclud-
ed from further unnecessary and potentially expensive
computations.

The approach by Kruiskamp [10] requires quite some
information about the desired circuit topology struc-
ture to be input by the practitioner in advance. Many
other methods, on the other hand, demand very little
or even no such information. This way, the evolution
is able to come up with a completely new topology
for a certain task. Our method is flexible in this aspect
because it allows a practitioner to enter an arbitrary
amount of prior knowledge about the circuit by con-
structing an appropriate component library. By adding
different sub-circuits to the library, or injecting known
topologies into the initial generation of the evolution-
ary search, he or she can freely control the amount of
entered knowledge.

Implementation of genetic programming can be quite
an arduous task, involving genetic tree definition, tree-
to-netlist conversion, and other complex mechanisms.

Figure 11: Frequency responses of automatically
evolved both topology and parameters for two high-
pass filters. For the second run, additional parameter
fine-tuning was carried out.

Table 2: A comparison to other existing circuit topology representation techniques.

Bloat-
safe?

Final
topology
size

Number of
sub-circuit
terminals

Search
space size

Built-in
topology
check

Prior-
knowl-
edge
required

Imple-
menta-
tion com-
plexity

Repro-
duction
mechanisms
complexity

Kruiskamp [10] yes limited arbitrary limited yes high low low
Koza [12] no unlimited two enormous no low high high
Lohn [13] no unlimited two enormous no low high low

Györök [14] yes limited arbitrary control-
lable

no low low /

Gan [15] yes limited two control-
lable

yes low low low

This work yes controllable arbitrary control-
lable

yes control-
lable

low low

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

39

It is also very important that our matrix representation
can be implemented quite easily. Furthermore, unlike
different genetic trees reproduction operators, our re-
production mechanisms are straightforward to imple-
ment and work natively with the upper-triangular con-
nection matrix. Györök [14], as seen in Table 2, does
not propose any reproduction mechanism other than
a Monte Carlo method.

5 Conclusions

We developed an analog circuit representation tech-
nique for automated topology synthesis in the form of
an upper-triangular binary matrix. The representation
prevents bloat during the evolution so that the circuit
cannot grow over the limits. Nevertheless, the imple-
mentation still enables a search over quite a large solu-
tion space whose size can be controlled by the element/
sub-circuit library. We observed the redundancy phe-
nomenon in the matrix-to-netlist conversion, which is
important for maintaining the genetic diversity of a pop-
ulation of circuits but is problematic from the netlist gen-
eration point of view. We proposed a procedure of gen-
erating a fully-redundant matrix that lends itself easily
to generation of a SPICE netlist. Based on the proposed
topology representation, we developed the crossover
and mutation genetic operators and an evolutionary al-
gorithm suitable for evolving an arbitrary circuit based
on a high-level statement about its required properties.
We demonstrated the suitability of the approach with
an evolution of a passive high-pass filter. We believe that
the results of this research can easily be extended to syn-
thetizing more complex passive and even active circuits,
which will be a focus of our future research.

6 References

1. L. W. Nagel and D. O. Pederson, “SPICE (Simulation
Program with Integrated Circuit Emphasis),” 1973.

2. J. Olenšek, T. Tuma, J. Puhan and Á. Bűrmen, “A
New Asynchronous Parallel Global Optimization
Method Based on Simulated Annealing and Dif-
ferential Evolution,” Applied Soft Computing, vol.
11, pp. 1481-1489, 2011.

3. J. Puhan, T. Tuma and I. Fajfar, “Optimisation meth-
ods in SPICE: a comparison,” in Proceedings of Eu-
ropean Conference on Circuit Theory and Design
(ECCTD), 1999.

4. U. M. Garcia-Palomares, F. J. Gonzalez-Castaño
and J. C. Burguillo-Rial, “A Combined Global & Lo-
cal Search (CGLS) Approach to Global Optimiza-
tion,” Journal of Global Optimization, vol. 34, pp.
409-426, 2006.

5. H. Schmidt and G. Thierauf, “A combined heuristic
optimization technique,” Advances in Engineering
Software, vol. 36, pp. 11-19, 2005.

6. S. Ebrahim Sorkhabi and L. Zhang, “Automated
topology synthesis of analog and RF integrated
circuits: A survey,” INTEGRATION, the VLSI journal,
vol. 56, pp. 128-138, 2017.

7. M. G. R. Degrauwe, O. Nys, E. Dijkstra, J. Rijme-
nants, S. Bitz, B. L. A. G. Goffart, E. A. Vittoz, S. Cser-
veny, C. Meixenberger, G. van der Stappen and
H. J. Oguey, “IDAC: an interactive design tool for
analog CMOS circuits,” IEEE Journal of Solid-State
Circuits, vol. 22, pp. 1106-1116, Dec 1987.

8. R. Harjani, R. A. Rutenbar and L. R. Carley, “OASYS:
a framework for analog circuit synthesis,” IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 8, pp. 1247-1266,
Dec 1989.

9. H. Y. Koh, C. H. Sequin and P. R. Gray, “OPASYN: a
compiler for CMOS operational amplifiers,” IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 9, pp. 113-125,
Feb 1990.

10. W. Kruiskamp and D. Leenaerts, “Darwin: Ana-
logue circuit synthesis based on genetic algo-
rithms,” International Journal of Circuit Theory and
Applications, vol. 23, pp. 285-296, 1995.

11. J. R. Koza, Genetic Programming: On the Program-
ming of Computers by Means of Natural Selec-
tion, Cambridge, MA: MIT Press, 1992.

12. J. R. Koza, I. F. H. Bennett, D. Andre, M. A. Keane
and F. Dunlap, “Automated Synthesis of Analog
Electrical Circuits by Means of Genetic Program-
ming,” Trans. Evol. Comp, vol. 1, pp. 109-128, Jul
1997.

13. J. D. Lohn and S. P. Colombano, “A circuit represen-
tation technique for automated circuit design,”
IEEE Transactions on Evolutionary Computation,
vol. 3, pp. 205-219, Sep 1999.

14. G. Györök, “Crossbar network for automatic ana-
log circuit synthesis,” in 2014 IEEE 12th Internation-
al Symposium on Applied Machine Intelligence and
Informatics (SAMI), 2014.

15. Z. Gan, Z. Yang, T. Shang, T. Yu and M. Jiang, “Au-
tomated synthesis of passive analog filters using
graph representation,” Expert Systems with Appli-
cations, vol. 37, no. 3, pp. 1887-1898, 2010.

16. K. Baumgardner and G. Elseth, Principles of Mod-
ern Genetics, West Publishing Company, 1995.

17. Ž. Rojec, Á. Bűrmen and I. Fajfar, «An evolution-
driven analog circuit topology synthesis,» in 2016
IEEE Symposium Series on Computational Intelli-
gence (SSCI), 2016.

18. C. Darwin, The Origin of Species, P. F. Collier & Son,
1909.

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

40

19. D. E. Goldberg and J. H. Holland, “Genetic Algo-
rithms and Machine Learning,” Machine Learning,
vol. 3, pp. 95-99, Oct 1988.

20. R. Schaumann, H. Xiao and V. V. Mac, Design of
Analog Filters 2nd Edition, New York, NY, USA: Ox-
ford University Press, Inc., 2009.

21. A. Bűrmen, J. Puhan, J. Olenšek, G. Cijan and T.
Tuma, “PyOPUS - Simulation, Optimization, and
Design,” EDA Laboratory, Faculty of Electrical En-
gineering, University of Ljubljana, 2016.

Arrived: 10. 11. 2017
Accepted: 06. 03. 2018

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40

