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Abstract: In this study, a low-voltage low-power, simple operational transconductance amplifier (OTA) based fractional order low-
pass and high-pass filters of order (n+α) are designed and simulated with CADENCE-PSPICE where 0<α<1 and n≥1. The employed 
transconductance amplifier operates at ±0.75 V. To simulate designed filters, 0.35 μm TSMC CMOS technology parameters are used. The 
simulation results verify theoretical statements. The power dissipations of simulated low-pass filters of orders 1.3, 1.5, 2.3 and 2.5 are 
14.6 nW, 13 nW, 17 nW and 15.3 nW, respectively. For the same filter orders, the corresponding dissipation values of high-pass filters are 
respectively 45.2 nW, 42.7 nW, 47.5 nW and 45 nW. In addition to the low-power low-voltage operation, another significant advantage 
of the proposed circuit topologies is that the OTA based low-pass and high-pass topologies provide electronic tuning capability of the 
orders and frequency responses of the filters without any structural change on these topologies. Therefore, same circuit topology can 
be used for the different orders of the same filter by just changing the biasing currents of the used OTAs. Additionally, OTA-C based 
filters offer usage of the grounded capacitors as well as resistorless realization.
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Nastavljiv filter frakcijskega reda nizkih moči na 
osnovi OTA-C
Izvleček: Članek predstavlja nizko in visoko pasovne filtre nizkih napetost in majhne moči na osnovi transkonduktančnega 
operacijskega ojačevalnika (OTC). Filtri reda (n+α) so načrtani in simulirani v CADNECE_PSPICE okolju, pri čemer je 0<α<1 in n≥1. 
Transkonduktančni ojačevalnik deluje pri napetosti ±0.75 V. Filtri so simulirani v 0.35 μm TSMC CMOS tehnologiji. Poraba moči 
simuliranih nizkopasovnih filtrov reda 1.3, 1.5, 2.3 in 2.5 so 14.6 nW, 13 nW, 17 nW in 15.3 nW. Visokopasovni filtri enakih redov porabijo 
45.2 nW, 42.7 nW, 47.5 nW in 45 nW moči. Nizko napetostno delovanje pri nizki porabi moči omogoča možnost elektronske nastavitve 
reda filtra brez spreminjanja topologije. Ista topologija tako omogoča izvedbo filtra različnega reda le s spreminjanjem mirovnega toka 
OTA. Filti na osnovi OTA-C omogočajo ozemljitev kondenzatorjev in izvedb o brez uporabe uporov.

Ključne besede: frakcijski filter; frakcijsko vezje; nizka moč 
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1 Introduction

Fractional calculus is a branch of mathematics that 
considers differential equations of arbitrary order in 
contrast to classical calculus.  It eliminates the require-
ment that the order of differential equations has to be 
integer. Therefore, it generalizes conventional differen-
tial and integral equations and helps the modelling of 
the real world phenomena better [1, 2]. Fractional cal-
culus has found applications in engineering, biology, 
control, viscoelasticity, electromagnetism, diffusion 
theory etc. [3]. By applying fractional calculus to elec-
tronics, sinusoidal oscillators, multi-vibrator circuits, 

phase locked loops, analogue fractional order control-
lers, differentiators-integrators and fractional order fil-
ters have emerged [3-23].

In the literature, several definitions of fractional deriva-
tives have been proposed. One of them is the Riemann 
and Liouville fractional derivative, which is given as
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where Γ(.) is the Gamma function and fractional order α 
is 0<α≤1 [4]. Applying the Laplace transform to (1) with 
zero initial conditions yields

 { } )()(0 sFstDL t
C αα =     (2)

where sα is called the fractional Laplacian operator [14].

Even though a non-integer order filter is usually re-
quired based on the specifications of applications, cur-
rent practice rounds off the filter order to the nearest 
integer. Therefore, the filters used today are integer 
orders. However, this approach limits the freedom of 
design. Fortunately, introducing fractional calculus into 
filter design removes this limitation and presents some 
advantages. The main advantage is that it enables 
the stepping attenuation of the fractional filter that is 
–20×(n+α) dB/dec or –6×(n+α) dB/oct [2].

In all of the designs of fractional order filters, the frac-
tional Laplacian operator sα has been used, due to the 
fact that transfer functions can be designed easily. 
However, a standard two-terminal component, which 
meets the fractional Laplacian operator, has not as yet 
been produced. Therefore, different methods have 
been proposed for approximating the fractional Lapla-
cian operator. By means of these methods, integer 
order transfer functions are achieved [16]. In previous 
studies on fractional filters, namely fractional domain 
first order filters and second order filters, researchers 
mostly prefer to emulate sα via R-C networks [3, 13, 17]. 
Instead of following this procedure, in this study sub-
stitution of the integer order approximation function 
into sα is preferred and then the final transfer function is 
used for implementation.

In this paper, by using the (1+α) order transfer function 
provided by [3], OTA-C based fractional step approxi-
mated Butterworth filter circuits of order (n+α) are de-
signed and simulated. The aim of this study is not de-
signing a new OTA active element or improving of OTA 
performance metrics. On the contrary, the target of this 
study is exploiting of OTAs presented features for de-
signing fractional order filters.

2 Design steps of the fractional order 
filters

In this section, general design equations for the ap-
proximated fractional order low-pass and high-pass fil-
ters of orders of (1+α) and (n+α) are derived and given 
in order.

2.1 The Approximated fractional Butterworth low-
pass filters of order (1+α)

The transfer function of the low-pass filter of order (1+α) 
was firstly introduced by [17] but it has an undesired peak 
in the pass-band. The modified version of the transfer func-
tion of the approximated fractional order Butterworth low-
pass step filter was proposed by Freeborn et al. as [3]
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where c1, c2 and c3 are coefficients which are deter-
mined by nonlinear curve fitting to achieve Butter-
worth characteristics in the frequency response. As 
mentioned above, there is no commercially available 
electronic device to make the characteristics of the 
fractional Laplacian operator sα available. A solution of 
this problem is the using integer order circuits. There-
fore, approximation methods like Carlson, Oustaloup, 
Matsuda, Continued Fraction Expansion (CFE) and 
the Charef method can be used. However, the result-
ing approximation functions are only valid in a limited 
frequency band. As the order of the approximation 
function increases, the accuracy as well as frequency 
band increase. Also, it demands more in terms of the 
hardware and power.  Therefore, there is a trade-off 
between accuracy and cost in hardware. Among these 
methods, the CFE method was preferred in this study 
from the circuit complexity point of view [9, 24].

According to the CFE method, the second order ap-
proximation function of sα is defined as [9]
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Substituting (4) into (3), the following integer order 
transfer function is derived as
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The expressions for m0, m1, m2 and k0, k1, k2 are found as
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The values of c1, c2 and c3 are determined by curve fit-
ting by minimizing the cumulative pass-band error 
between responses of H1

BWLPF(s) and H1+α
FLPF(s), where 

H1
BWLPF(s) and H1+α

FLPF(s) are the 1st order and the (1+α) 
order fractional Butterworth filter responses, respec-
tively. 

Before realizing the fractional order transfer functions, 
the stability of the fractional order transfer functions 
must be determined. To achieve that, the s to w domain 
transformation which requires that w=s1/m is selected. 
In this transformation, it is assumed that all of the frac-
tional orders can be expressed as αi=ki/m (i=1,2,3,…) 
where m is the common factor. The stability condition 
of this method is that all of the pole angles IθwiI have 
to be greater than π/(2xm).  Detailed information and 
examples about stability can be found in [25]. Accord-
ing to the s to w domain transformation, for α=0.3 and 
α=0.5, the following characteristic equations from (3) 
are obtained as

 8 (a = 0.3).0477.0 313 ++ ww                (7a)

 859 (a = 0.5).068.0 515 ++ ww                (7b)

where s=w1/10. For both of the characteristic equa-
tions, the stability condition is that the pole angles 
IθwiI (i=1,2,3,…) have to be greater than π/(2x10). The 
minimum pole angles for (7a) and (7b) are calculated as 
I15.1671°I and I14.1656°I respectively, which satisfy the 
stability condition being greater than 9°.

To realize the integer order transfer function of (5), a 
block diagram (BD) of the inverse follow the leader feed-
back (IFLF) with the input distribution form can be used. 
The function of (5) can also be achieved by cascading 
of the first order transfer function of an integrator and 
second order transfer function of the single amplifier bi-
quad (SAB) or the multiple amplifier biquad (MAB). But 
this way does not provide electronic tuning capability, at 
the same time it increases design complexity and power 
consumption. Thus, the IFLF form design is preferred. 
The BD diagram of the fractional low-pass filter is shown 
in Fig.1 where Gi (i=0,1,2) corresponds to the scaled ver-
sion of corresponding output quantity. The transfer 
function of this topology is expressed as
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where G0, G1, G2 and T1, T2, T3 are gains and time con-
stants, respectively. By equating (5) with (8), it can be 
obtained that  
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At the circuit realization, expressions in (9) will be uti-
lized to determine the bias currents of OTAs in the filter.

Figure 1: The BD diagram of the approximated Butter-
worth low-pass fractional order filter

2.2 The Approximated fractional Butterworth high-
pass filters of order (1+α)

The transfer function of the fractional high-pass filters 
of order (1+α) can be obtained by replacing s with 1/s in 
(3). By performing this transformation and same steps 
in the Section 2.1, the following transfer function is de-
rived as
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The expressions for m0, m1, m2 are same as those in (6), 
but the expressions k0, k1, k3 and k4 are found as
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The BD diagram of the fractional high-pass filters of or-
der (1+α) is portrayed in Fig.2. The transfer function of 
this topology is given by
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By equating (10) with (12), it can be found that
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Figure 2: The BD diagram of the approximated Butter-
worth high-pass fractional order filter

2.3 Fractional low-pass filters of order (n+α)

The transfer functions of the fractional low-pass filters 
of order (n+α) could be reached by using polynomial 
division given by (14) [3]
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where H1+ɑ
FLPF(s) is the fractional low-pass filter given by 

(5) and Bn-1
LP(s) is the (n–1) order standard low-pass But-

terworth polynomial. 

From (14), the general form of fractional low-pass filters 
is derived as
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where the coefficients Xi (i=0,1,2) and Yi (i=n+2, n+1,...0) 
can be found using kj and mj (j=0,1,2) in (5) and the coef-
ficients of the Butterworth low-pass polynomial Bn-1

LP(s).

The BD diagram of the fractional low-pass filters of or-
der (n+α) is shown in Fig.3b. The transfer function of 
this topology is expressed as
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By equating (15) with (16), it can be obtained that
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An alternative way of the realization of the fractional 
low-pass filters of (n+α) is the cascade connection of 
fractional order filter H1+ɑ

FLPF(s) and Butterworth filter of 
order (n–1) as portrayed in Fig.3a. The transfer function 
of the block is given as [23]
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where Bn-1
LP(s) is the (n–1) order low-pass Butterworth 

polynomial.

a

b

Figure 3: The realization of the approximated Butter-
worth low-pass fractional (n+α) order filters via: a cas-
cade connection; b polynomial division

2.4 Fractional high-pass filters of order (n+α)

As following the similar procedure carried out in the 
section of the (n+α) order fractional low-pass filters, 
the developed BD diagram and design equations for 
their high-pass counterparts are depicted in Fig.4 and 
expressed as
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where H1+ɑ
FHPF(s) is the fractional high-pass filter given 

by (10) and Bn-1
HP(s) is the Butterworth high-pass poly-

nomial derived by writing 1/s instead of s in Bn-1
LP(s). 

Substituting (10) into (19), the general IFLF form of frac-
tional high-pass filters is obtained as
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where the coefficients Xi (i=1,2,3) and Yi (i=n+2, n+1,...0) 
can be derived using kj (j=0,1,2,3) in (11) and mj (j=0,1,2) 
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in (6) and the coefficients of the Butterworth high-pass 
polynomial BHP

n-1(s).

From Fig.4b, the transfer function of this topology is 
found as
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By equating (20) with (21), it can be obtained that
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a

b

Figure 4: The realization of the approximated Butter-
worth high-pass fractional (n+α) order filters via: a cas-
cade connection; b polynomial division

The transfer function of the Fig.4a is given by
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where BHP
n-1(s) is the (n–1) order high-pass Butterworth 

polynomial.

Band-pass filters can also be attained by cascading the 
high-pass and low-pass filters as demonstrated in Fig.5.

Figure 5: The realization of the approximated Butter-
worth band-pass fractional (n+α) order filters via cas-
cade connection

3 OTA-C based realizations of the 
fractional filters 

To achieve very low cut-off frequencies with OTA-C fil-
ters, very low transconductance values are required. In 
order to achieve low transconductance values, the OTA 
structure shown in Fig.6 is chosen [26]. It is chosen due 
the fact that this OTA building block has very simple 
internal construction to provide advantages of less 
power consumption and chip area.  At the same time, 
it allows a wide range of transconductance controlla-
bility. Moreover, its linear input range is improved over 
the classical differential pair. In this scheme, the input 
voltages Vip and Vin are applied to improved cross cou-
pled MOS (Metal Oxide Semiconductor) cell composed 
of M1-M2 and M3-M4. The output current I0 is related to 
input differential voltage (Vip–Vin) as I0=gm×(Vip–Vin). The 
OTA is biased in manner of operating in subthreshold 
region for low voltage operation. The transconductance 
of the OTA is adjusted by the bias current source IB. The 
supply voltages VDD and VCC are selected as +0.75 V and 
–0.75 V, respectively. The output current expression of 
the chosen OTA is given by
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where the Vid is the input voltage difference (Vip–Vin), VT 
is the thermal voltage, m is the ratio of aspect ratios of 
the M1(M2) and M3(M4) and n is the subthreshold slope 
factor.  

Figure 6: The used OTA structure
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The realized filter topologies are depicted in Fig.7 and 
Fig.8, respectively. From these figures, the related time 
constants could be expressed as
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where k is 1, 2 and 3. 

Figure 7: The circuit of OTA-C based fractional order 
Butterworth low-pass filter of order (1+α)

Figure 8: The circuit of OTA-C based fractional order 
Butterworth high-pass filter of order (1+α)

Adding extra (n–1) OTA-C integrators to Fig.7 and Fig.8, 
the (n+α) order low-pass and high-pass filters are re-
alized according to the polynomial division method, 
respectively. If the cascade connection method is pre-
ferred, the circuit of the (n–1) order corresponding But-
terworth filters should be connected to output ports of 
circuits in Fig.7 and Fig.8, respectively. 

4 Simulation

In this section, while the circuit level simulations of 
the OTA-C based low-pass and high-pass filters of or-
der (n+α) are performed via PSPICE with 0.35 μm TSMC 
CMOS technology parameters, their corresponding 
transfer functions are simulated numerically. Then both 
of the results are given in comparative way.

4.1 The Approximated fractional Butterworth low-
pass filters 

The parameters given by (9) are calculated and the 
scaled versions according to f = 100Hz are given in Ta-
ble 1 for α = 0.3 and α = 0.5.

Table 1: The calculated parameters given by (9) for 
α = 0.3 and α = 0.5

α = 0.3 α = 0.5
T1 4.6 10-4 5.5 10-4

T2 14 10-4 14 10-4

T3 61 10-4 54 10-4

G0 1.01 1.01
G1 0.685 0.6
G2 0.115 0.07

From Table 1, the required bias currents of OTAs for 
α = 0.5 and for α = 0.3 with the equal values of the in-
tegrator capacitors of 10 pF are calculated and given in 
Table 2.

Table 2: The calculated bias current of OTAs according 
to Table 1

α = 0.3 α = 0.5
Ib1 1.8 nA 1.5 nA
Ib2 573 pA 597 pA
Ib3 135 pA 154 pA

The results of frequency simulations for α  =  0.5 and 
α  =  0.3 are demonstrated in Fig.9, the corresponding 
theoretical values are also given in same figure. It can 
be clearly seen from the Fig.9 that the stop-band at-
tenuation changes according to the fractional order α 
which supports the theoretical statements, as it is ex-
pected. The derived stop-band attenuations for α = 0.5 
and α = 0.3 are respectively –30.4 dB/dec and –25.61 dB/
dec in the range of 628 to 6280 rad/sec, which are close 
to –20×(1.5) dB/dec  =  –30  dB/dec and –20×(1.3) dB/
dec = –26 dB/dec. Therefore, unlike the integer order fil-
ters, stop-band attenuation of –20×(α+1) dB/dec can be 
achieved closely. Moreover, the stop-band attenuation 
increases by increasing the order α. However, it should 
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be taken into account that there is not a very precise 
slope of attenuation beyond 6280 rad/sec because the 
used approximation function is just the second order 
form. On the other hand, the filter presents quite flat re-
sponse in the pass-band for the all values of α.

Figure 9: The numerical and simulated responses of 
fractional Butterworth low-pass filters of different orders

The power dissipations of low-pass filters of orders 1.3 
and 1.5 are derived as 14.6 nW and 13 nW, respectively. 
Hence, the proposed filter topologies are suitable for 
low power applications.

In order to compare proposed filter circuits with the 
others in the literature, some performance parameters 
are given in Table 3. It can be deduced from Table 3 that 
proposed circuits outperform the work in [23] in terms 
of power efficiency as well as slope of stop-band atten-
uation. Additionally, proposed filters support electron-
ic tuning in contrast to the work in [23]. On the other 
hand, even though the work in [22] has advantages 
over proposed circuits in terms of power consumption 
and supply voltage, it needs very low and accurate bias 
currents so it can be very difficult to achieve such a very 
low and accurate current levels. Different from works 
of [22-23], comparing proposed circuits with the oth-
ers, proposed filters have advantages of the low power 
consumption and low supply voltage, integration ca-
pability, good slope of the stop-band attenuation and 
electronic tunability. But it should be considered that 
other circuits except the works of [22-23] are based on 
discrete form circuit components.

To observe output Total Harmonic Distortion (THD) 
level, a fixed frequency of 30 Hz and variable amplitude 
sinusoidal input signal is applied to the fractional low-
pass filters. The realized output is presented in Fig.10. 

Table 3: The comparison of some performance parameters of the fractional order filters of order 1.5

[3] [14] [16] [18] [22] [23] This study

Filter Types LP-HP LP-HP
BP -BR

LP-HP
BP LP LP-HP LP LP-HP

Approx. Method
- order CFE -2nd CFE -4th CFE -2nd FEA CFE -2nd CFE -2nd CFE -2nd

Circuit configuration FPAA 
based RLC circuit SAB circuit CCII based

Sinh/Log 
domain 
building 

block based

DDCC 
based

OTA
based

Mode VM VM VM VM CM VM VM
Technology - - - - 0.18 μm 0.35 μm 0.35 μm

Voltage supply - - - - 500 mV ±500 mV ±750mV

Electronic tunability Supported Not 
supported

Not 
supported

Not 
supported Supported Not 

supported Supported

Integration capacitor 
(min) - - - - 60 pF 751 pF 10 pF

Power cons.
(Sim.)

LP
- - - -

5.47 nW 185 μW 13 nW

HP 3.56 nW - 42.7 nW

Cut-off freq.
(Theo.\Sim..)

LP 1 kHz
\ -

1 kHz
\ -

-
\ -

-
\160 Hz

10 Hz
\11.8 Hz

1.7 kHz
\-

100 Hz
\101.6 Hz

HP 10 kHz
\ -

-
\ -

-
\ -

-
\ -

-
\3.87 Hz

-
\ -

100 Hz
\100.3 Hz

Stop-band 
attenuations

Sim.
(Theoretically
-30 dB/ dec or

-6 dB/oct)

LP -30.75 dB/
dec - -29.74

dB/dec - -9.1
dB/oct

-31
dB/dec

- 30.4
dB/dec

HP -29.49 dB/
dec - - - -9.2

dB/oct - -29.7
dB/dec
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It is clearly seen that, the THD level is acceptable up to 
120 mV input amplitude.

Figure 10: The output THD versus a fixed frequency-
variable amplitude input voltage

To evaluate the time domain response of the low-pass 
filter, as an input, a 30 Hz sinusoidal signal with 50 mV 
amplitude is applied to filter of order α = 0.5. The ob-
tained output signal is shown in Fig.11.

Figure 11: The time domain response of the 1.5th or-
der fractional Butterworth low-pass filter

To gain more insights about higher order fractional fil-
ters and show applicability of the cascade realization, 
the simulated responses of the 2.3rd and 2.5th order 
fractional low-pass filters are depicted in Fig.12. The 
power dissipations of low-pass filters of orders 2.3 and 
2.5 are derived as 17  nW and 15.3  nW, respectively. 
The simulated pass-band attenuations of these filters 
are respectively –45.3 dB/dec and –50.13 dB/dec while 
their theoretical values are –45 dB/dec and –50 dB/dec.

4.2 The Approximated fractional Butterworth high-
pass filters

The parameters provided by (13) are calculated and 
given in Table 4 for α = 0.3 and α = 0.5, respectively. 

Table 4: The calculated parameters given by (13) for 
α = 0.3 and α = 0.5

α = 0.3 α = 0.5
T1 4.13 10-4 4.71 10-4

T2 18 10-4 18 10-4

T3 55 10-4 46 10-4

G1 0.12 0.07
G2 0.68 0.6
G3 1 1

According to Table 4, the corresponding bias currents 
of OTAs for α = 0.5 with the same values of the capaci-
tors of 10 pF are obtained and presented in Table 5.

The results of simulations for α  =  0.3 and α  =  0.5 are 
illustrated in Fig.13. It can be deduced from the Fig.13 
that the stop-band attenuation changes according to 
fractional order α. The reached stop-band attenua-
tions for α = 0.5 and α = 0.3 are respectively –29.7 dB/
dec and –25.5 dB/dec, which are close to –20×(1.5) dB/
dec = –30 dB/dec and –20×(1.3) dB/dec = – 26 dB/dec.

Table 5: The calculated bias current of OTAs according 
to Table 4

α = 0.3 α = 0.5
Ib1 2 nA 1.75nA
Ib2 467 pA 448 pA
Ib3 149 pA 178 pA
Ibx 2 nA 2 nA

The power consumptions of high-pass filters of orders 
1.3 and 1.5 are simulated as 45.2 nW and 42.7 nW, re-
spectively. The main reason of higher power dissipa-
tions of the high-pass filters in contrast to their low-
pass counterparts is the summation node constructed 
by the U4(gmx) and U5(1/gmx) shown in Fig.8.

Figure 12: The simulated responses of the 2.3rd and 
2.5th order fractional Butterworth low-pass filters

I. E. Sacu et al; Informacije Midem, Vol. 48, No. 3(2018), 135 – 144



143

To evaluate output THD level versus input voltage, a 
fixed frequency of 1 kHz and variable input sinus is ap-
plied to the fractional high-pass filters. The obtained 
THD level doesn’t exceed 2.9% up to 120 mV input volt-
age. Thus, the high-pass filters can be kept in accept-
able THD range up to 120 mV input amplitude.

To attain higher order fractional high-pass filters, the 
cascade connection is preferred because of its simplic-
ity. The simulated responses of the 2.3rd and 2.5th or-
der fractional high-pass filters are presented in Fig.14. 
The power dissipations of high-pass filters of orders 2.3 
and 2.5 are derived as 47.5 nW and 45 nW, respectively. 
The simulated pass-band attenuations of these filters 
are respectively –45.1 dB/dec and –49.3 dB/dec while 
their theoretical values are –46 dB/dec and –50 dB/dec.

Figure 14: The simulated responses of the 2.3rd and 
2.5th order fractional Butterworth high-pass filters

5. Conclusion

In this study, the OTA-C based approximated fractional 
order Butterworth filters are introduced, designed and 
simulated. The general design equations are derived 
and given in order for the readers. Even though the 
fractional filters are approximated by higher degree 
integer order transfer functions or R-C networks com-

posed of the many branches, these are the simple ways 
of circuit implementations until fractional electronic 
components become commercially available. The sim-
ulation results confirm theoretical statements. Howev-
er, it should be taken into account that there are small 
deviations from the ideal cases due to approximation 
functions, rounding errors and the non-ideal charac-
teristics of active elements. Nevertheless, it can be said 
that unlike their integer order counterparts, fractional 
order filters provide fractional stepping attenuation in 
the stop-band. Furthermore, it can be deduced from 
simulations that the proposed filter topology is appro-
priate for low amplitude-low frequency signals like bio-
medical signals, such as EEG (electroencephalograph), 
EOG (electrooculogram). This is because the frequency 
bandwidth of the filters is not very wide owing to the 
approximation functions used. At the same time, since 
the proposed fractional filter topologies allow for at-
tenuation of less than multiples of 20 dB/dec, more in-
formation could be kept in the stop-band in compari-
son with their integer order counterparts. In addition, 
the proposed filter circuits allow for electronic tuning 
of order and frequency response without any structur-
al changes on related topologies and also provide the 
low-voltage low-power operation.
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