
205

Original scientific paper

 MIDEM Society

Implementation of VIP for bus interface logic of
32-bit processor using System Verilog
D. David Neels Ponkumar1, P. Jagatheeswari1, T.S.Arun Samuel2

1,2Dept. of Electronics and Communication Engineering, Dr. Sivanthi Aditanar College of
Engineering, Tiruchendur, Tamil Nadu, India.

2Dept. of Electronics and Communication Engineering, National Engineering College, Kovilpatti,
India

Abstract: A verification environment to verify an ARM-based SoC is proposed in this work. This work introduces the design of a
Verification Intellectual Property (VIP) of Advanced Microcontroller Bus Architecture (AMBA). AMBA protocols are today the best
standards for 32-bit processor because they are well documented and can be used without royalties. The VIP provides Coverage Driven
Verification (CDV) which significantly reduces the design verification time. The code coverage verification of the AHB bus master,
Icache controller, Dcache controller and APB peripherals such as APB bridge, timer, UART, and ACE is done in this work. The test cases
done for the APB peripherals are ACE with the mil_std_protocol, Timers for generation of interrupt and watchdog reset, UART for
transmitting and receive messages, and interrupt registers for Reading and Write. The functional verification of AMBA is carried out
using the Mentor Graphics Questasim tool with the system Verilog language.

Keywords: Verification Intellectual Property; AMBA; Coverage Driven Verification; timer; ACE; UART; system Verilog

Uporaba VIP za vmesnik logičnega vodila
32-bitnega procesorja s uporabo System Verilog
Izvleček: V članku je predlagano okolje preverjanja SoC na osnovi ARMa. Struktura uvaja verifikacijo intelektualne lastnine (VIP) na
napredni arhitekturi vodila mikrokontrolerja (AMBA). AMB protokoli so danes najbolj standardni protokoli na 32- bitni procesorjih,
saj so dobro dokumentirani in brez avtorskih zaščit. VIP uporablja CVD, ki močno zmanjša čas verifikacije. V tem delu je predstavljena
verifikacija AHB master vodila, Icache in Dcache kontrolerjev ter APB perifernih enot, kot so časovnik, UART in ACE. Testni primeri za
APB periferne enote so ACE z mil_std_protocol, časovniki za generacijo prekinjanj in resetiranja kontrolne enote (watchdog), UART
za pošiljanje in sprejemanje sporočil in prekinitveni registri za zapis in branje. Funkcionalno preverjanje je izvedeno s pomočjo orodja
Mentor Graphics Questasim v jeziku Verilog.

Ključne besede: verifikacija intelektualne lastnine; AMBA; verifikacija; časovnik; ACE; UART; Verilog

* Corresponding Author’s e-mail: david26571@gmail.com

Journal of Microelectronics,
Electronic Components and Materials
Vol. 48, No. 4(2018), 205 – 211

1 Introduction

With the continued progression of chip geometries to
ever smaller sizes, designers are finding themselves
with a wealth of available gates in which to create their
latest designs [1-4]. With design from scratch entirely
out of the question, designers now build these systems
with off-the-shelf IP blocks that are pre-designed and
verified, helping them meet their goals of differen-
tiation, cost control and time to market.VIP blocks are
well-tested simulation models of industry-standard

buses and protocols that generate and respond to
stimulus and check protocol rule adherence. VIP reduc-
es system verification time and improves quality.

VIP design of AMBA AXI bus is done in the previ-
ous works [5-9][11], But the VIP for Dcache controller,
Icache controller and APB peripherals such as APB
bridge, timer, UART, and ACE is done for the first time.
The implemented VIP finds application in the realiza-
tion of onboard computers for navigation, guidance,

https://doi.org/10.33180/InfMIDEM2018.402

206

D. D. N. Ponkumar.et al; Informacije Midem, Vol. 48, No. 4(2018), 205 – 211

and control processing in-flight applications as well as
for general purpose processing applications.

The verification environment is managed with Questa
Sim Simulator ver.10.0, test bench and SVA in System
Verilog HDL and DUT in VHDL. Separate assertion files
in system Verilog are bound with the corresponding
test benches to validate design specifications.

2 Proposed system design

2.1 AMBA Bus

The Advanced Microcontroller Bus Architecture speci-
fication defines an on-chip communications standard
regarding bus protocols for communication between
various system devices and peripherals. AMBA is a
registered trademark of ARM Limited and is an open
standard, on-chip interconnect specification for the
connection and management of functional blocks in
a System-on-Chip (SoC) [2]. This work provides Cover-
age Driven Verification (CDV) for the implementation
of Verification Intellectual Property (VIP) for the AMBA
bus. In this paper, the verification of the APB peripher-
als such as APB Bridge, timer, UART, and ACE is done.

2.2 AMBA Architecture

An AMBA based microcontroller typically consists of a
high-performance system backbone bus (AMBA AHB
or AMBA ASB), able to sustain the external memory
bandwidth, on which the CPU, on-chip memory, and
other Direct Memory Access (DMA) devices reside. A
typical AMBA Architecture is shown in figure 1[2].

Figure 1: AMBA Architecture

2.3 AHB Master

AHB_master generates chip select signals, the external
memory address for instruction and data memory. The
FSM of AHB_master is shown in figure 2.

The FSM works on clk_x2_pos. Wait states are added for
external instruction and data memory access. They are

selected from the Memory Configuration Register de-
pending on the memory bank accessed.

Instr_state: It is selected when instruction access is re-
quested by fetch stage of the pipeline when instruction
cache is disabled. Chip select signals and address for
external memory access are generated. The instruction
read from external memory is sent to the fetch stage of
the pipeline. FSM waits in the instr_state till the speci-
fied wait states are over and transitions back to idle
state.

Figure 2: FSM of AHB_master

Data_state: It is selected when data memory access is
requested by the memory stage of the pipeline when
data cache is disabled. Chip select signals for load/store
and address for external memory access are generated.
For load, the data read from external memory is sent
to the memory stage of the pipeline. For the store, the
data from the memory stage of the pipeline is sent to
the external memory. FSM waits in the data_state till
the specified wait states are over and transitions back
to idle state.

ICache_state: This state is selected if Icache is ena-
bled and a cache miss occurs. FSM2 handling miss in
icache_controller.vhd is active here. The chip select
signals are generated when fsm2 in icache_controller.
vhd is in wait_for_mfc (wait_for_mfc_icache = 1) state.
FSM transitions to idle when icache access is complete
(icache_access_complete=1, from icache_controller.
vhd)

DCache_state: This state is selected if Dcache is ena-
bled and a cache miss occurs. FSM2 handling miss in
dcache_controller.vhd is active here. The chip select
signals are generated when fsm2 in dcache_controller.
vhd is in wait_for_mfc (wait_for_mfc_dcache = 1) state.
FSM transitions to idle when dcache access is complete
(dcache_access_complete=1, from dcache_controller.
vhd).

APB_sel: If a memory mapped peripheral is selected
apb_sel state is encountered. FSM transitions to idle
when hready_apb = ‘1’ from apb_bridge.vhd, the exter-
nal memory address for instruction access, is generat-

207

ed in instr_state or icache_state. The external memory
address for data access is generated in data_state or
dcache_state.

2.4 Icache controller

The instruction cache controller is used to cache cop-
ies of frequently accessed instructions, thus eliminat-
ing the program memory access bottleneck. The cache
controller receives instruction read request an address
from the Fetch stage. Depending on hit/miss the cache
controller supplies instruction from the on-chip cache
or reads from external program memory via AHB and
provides instruction to the pipeline. Till external mem-
ory access is complete, the pipeline is stalled.
- 32KB size.Can store 8K instructions
- Two way set associative
- Uses Least Recently Used (LRU) algorithm for

block replacement
- Block size: 4 words

LRU Replacement Algorithm
The LRU (Least Recently Used) algorithm is imple-
mented for the two-way associative cache conFigure
uration. This algorithm selects a block for replacement
based on its usage, thus benefiting from the temporal
locality principle. A single bit is added as part of the tag
entry in the tag ram. Whenever a tag match is found
in a block, the LRU bit of that block is cleared and the
LRU bit of the second block in the set is made ‘1’.When
a block is to be evicted, the tag entry in the set which
has its LRU bit set to 1 is selected.

2.5 Dcache controller

The data cache controller caches frequently used data
items. The data cache implements copy back with write
allocate on a write miss. The dirty blocks are written
back to external memory only when they need to be
evicted.
- Size = 32KB
- Cache line size = 4words
- Uses an LRU replacement algorithm
- Copy back policy
- Write allocate on a write miss
- Two way set associative

Hardware Organization: Data cache is identical to the
instruction cache, except that each tag ram location
has an additional bit called the dirty bit, which indi-
cates whether the cache block had been modified dur-
ing its cache residency. Thus each tag ram array has 23
bits * 1024 locations.

Address Decoding: This is identical to two-way associa-
tive instruction cache implementation. The 10-bit ad-

dress is used to index the tag ram arrays. The two-word
locator bits are appended to the 10-bit set address to
address the cache ram arrays.

Copy Back Architecture: When there is a store request
from the memory stage of the pipeline, the corre-
sponding cache array entry is updated in the cache if
it already exists in the cache. If it is a cache miss, the
block which includes the address requested by the
store operation is brought into the cache from the ex-
ternal memory (write allocate on a write miss) and the
required location is updated. This policy is especially
beneficial when frequent writes to a memory location
(store instruction) occur since there is no need to ac-
cess external memory once the word is in the cache.
This policy uses the memory bandwidth more efficient-
ly compared to the write through policy wherein each
store location writes to the external memory.

Data Cache Parity Error detection of cache tags and
data is implemented using two parity bits per tag and
4-byte data sub-block. The tag parity is generated from
the tag value, LRU, dirty and the valid bits. The data par-
ity is derived from the sub-block data. The parity bits
are written simultaneously with the associated tag or
sub-block and checked on each access. The two parity
bits corresponding to the parity of odd and even data
(tag) bits.

2.6 APR Bridge

APB bridge acts as the master for the APB slaves – four
ACE, two UART, interrupt registers and four timers. The
APB bridge converts the AHB signals from the bus mas-
ter to corresponding signals in APB. Memory configura-
tion register specifies the no. of wait states for different
memory banks and internal RAM.

Select signal for selecting a memory mapped register is
generated by decoding the address (haddr). Hwrite=1
indicates a register write operation. Hwrite=0 indicates
a register read operation. The ACE, UART, timer, inter-
rupt, and processor configuration registers are read or
written in a single clock cycle, and hready_apb is as-
serted. For ace access hready_apb is asserted when
already signal is asserted. The Processor Configuration
Register is shown in table 1.

Table.1: Processor Configuration Register

Bit Description
31:13 Unused
12 Interrupt Enable
11 Watchdog enable
10 SECDED enable for Internal RAM

D. D. N. Ponkumar.et al; Informacije Midem, Vol. 48, No. 4(2018), 205 – 211

208

9 SECDED enable for external memory bank 6
8 SECDED enable for external memory bank 5
7 SECDED enable for external memory bank 4
6 SECDED enable for external memory bank 3
5 SECDED enable for external memory bank 2
4 SECDED enable for external memory bank 1
3 SECDED enable for external memory bank 0
2 SECDED enable for Internal Registers
1 Instruction Cache Enable
0 Data Cache Enable

2.6 AMBA Advanced Peripheral Bus

The APB Bridge is the only bus master on the AMBA
APB. Also, the APB Bridge is also a slave on the higher-
level system bus (for example AHB). The bridge unit
converts system bus transfers into APB transfers and
performs the following functions:
- Latches the address and holds it valid throughout

the transfer.
- Decodes the address and generates a peripheral

select, PSELx. Only one select signal can be active
during a transfer.

- Drives the data onto the APB for a write transfer.

2.7 Code Coverage Analysis

Code coverage is a verification technology is used to
recognize what code has been executed (figure 3). It
has to be checked only after the simulation part. If the
design may look like a good design, but the problem
is that it can contain unknown bugs. It is hardly possi-
ble to know the verification is functionally correct, with
cent percent certainty and all of the test benches simu-
late successfully. The main objective of the code cover-
age is to find out which code has to forget to exercise
in the design.

The term “test bench” specifies the stimulus used to ini-
tiate a predestined input sequence for the design and
to examine its response. The test bench describes the
stimulus for the DUT along with its responsibility for the
outputs. Here, the test bench is written in SystemVer-
ilog with a preset input sequence, and they may be in-
cluded with external data files. The main task of the test
bench is that to verify what input patterns to provide
to the design and what is the anticipated throughput
of a properly working design. If the test bench was not
exactly executed, it should be returned in the design.
So, code coverage technology is used for the 100% cer-
tainty. It can be classified into four categories. They are
Statement coverage, Path coverage (Branch and Toggle
coverage), Expression coverage, FSM coverage.

Figure 3: Verification plan

Statement coverage: It is also known as Block cover-
age, where the block is series of statements. If a single
statement is executed, all of the statements in the block
will be executed. By the verification suite, it measures
how much of the total line of code was executed. Fig-
ure 4 shows the analysis window for the statement cov-
erage verification. It will be generated after the simu-
lation part. The tick () mark indicates that statement
code which includes in the DUT are functionally cor-
rect. If shows (x) mark, indicate that design is function-
ally incorrect. It will quickly identify, and we can browse
which statements that were not executed.

Figure 4: Statement coverage

FSM: It is usually, coded using a choice in a case state-
ment, the unvisited state identified with uncovered
statements. During the verification time, it clearly or
correctly identifies the state transitions. Figure 5 shows
the bubble diagram for FSM. It indicates that state tran-
sitions of decoder sections.

Branch and Toggle coverage: A signal is considered
to have fully toggled when it has experienced at least
one rising edge and at least one falling edge during
the simulation. It has been found from the simulated
results that the coverage windows, which indicate all
the branch and toggles present in the design of AMBA
was functionally, correct.

D. D. N. Ponkumar.et al; Informacije Midem, Vol. 48, No. 4(2018), 205 – 211

209

Transition Coverage: Transition coverage measures
the presence or occurrence of sequences of values.
Transition coverage can involve more than two con-
secutive values of the same coverage point. However,
the number of possible bins grows factorially with the
number of transition states. Mechanically, transition
coverage is identical to coverage points. Specific values
are sampled at specific locations at specific points in
time with specific bins. Table 2 and 3 show the Asser-
tions for the Timer module and the UART module.

Table.2: Assertions for the Timer Module

Assertion Description
Timer_hreset_prdata prdata_timer=32’h00000000 when hreset is asserted
Timer_hreset_intr Intr_timer1, Intr_timer2, Intr_timer3, Intr_timer4=0 when hreset is asserted
Timer1 underflow When prdata_timer<=32’h00000000 and haddr <= 32’hE0000048 then intr_timer1=0
Timer2 underflow When prdata_timer<=32’h00000000 and haddr <= 32’hE0000054 then intr_timer2=0
Timer3 underflow When prdata_timer<=32’h00000000 and haddr <= 32’hE0000060 then intr_timer3=0
Timer4 underflow When prdata_timer<=32’h00000000 and haddr <= 32’hE000006c then intr_timer4=0
Timer1_disable When prdata_timer<=32’h00000000 and haddr <= 32’hE0000040 then intr_timer1=1
Timer2_disable When prdata_timer<=32’h00000000 and haddr <= 32’hE000004c then intr_timer2=1
Timer3_disable When prdata_timer<=32’h00000000 and haddr <= 32’hE0000058 then intr_timer3=1
Timer4_disable When prdata_timer<=32’h00000000 and haddr <= 32’hE0000064 then intr_timer4=1

Table.3: Assertions for the UART Module

Assertion Description
Uart1_transmit enable When hreset is asserted and haddr==32’hE0000020 && hwdata==24’h0000A5 then

rs232_tx1==1’b1
Uart1_recieve enable When hreset is asserted and haddr==32’hE0000024 && rs232_rx1==1’b1 then hrdata_

apb==32’h000000A5
Uart2_transmit enable When hreset is asserted and haddr==32’hE0000080 && hwdata==24’h0000A5 then

rs232_tx2==1’b1
Uart2_recieve enable When hreset is asserted and haddr==32’hE0000084 && then rs232_rx2==1’b1 then

hrdata_apb==32’h000000A5

3 Results and discussion

The functional verification of AMBA is carried out using
the Mentor Graphics Questasim tool in the code cover-
age mode with the SystemVerilog language. The Sys-
temVerilog simulation is performed to verify the AMBA
design by using the VIP. Functional integrity of DUT is
checked by using Assertions and cover groups along
with necessary test inputs.

Figure 6 shows the instance coverage analysis of the
AMBA peripherals. The instance analysis is done a state
of the peripherals during each instance. It provides the
coverage of the individual modules in the AMBA pe-
ripherals. This window analyzes coverage statistics for
each instance in a flat and non-hierarchical view. The
window contains the same code coverage statistics
columns as in the Files and Structure windows.

Figure 6: Instance coverage

Figure 5: FSM coverage

D. D. N. Ponkumar.et al; Informacije Midem, Vol. 48, No. 4(2018), 205 – 211

210

Figure 7 shows the coverage aggregation analysis of
the AMBA peripherals. The coverage aggregation anal-
ysis shows, the state of the toggle graph, state graph,
and the transition graph during the coverage analysis.

Figure 7: Coverage aggregation

The Assertion Coverage of the AMBA peripherals is also
analyzed using a simulation tool. Assertion/properties
provide a clear indication to the VIP module. The as-
sertions can be set as true or false throughout the VIP
module. It has been found from the simulated results
that, the total of 17 assertions are used for the analy-
sis and each of them has been satisfied throughout
the analysis. Hence, the assertion coverage of the pro-
posed VIP module is 100 %.

Figure 8 and 9 shows the coverage analysis report of
the AMBA peripherals. The coverage analysis depicts
the coverage obtained by the proposed VIP module for
each of the AMBA peripherals. For the coverage analy-
sis, the VIP considered seven aspects for each module,
and they are the statement, Branches, FEC condition
trees, FEC expression trees, States, transition, and tog-

gle bin. In total, proposed VIP has achieved coverage
value of 91.4%, for each AMBA peripherals. Besides, the
total 17 assertions provided for the analysis has never
failed throughout the process,

Figure 9: Coverage report (Continued)

4 Conclusion

In this work, verification environment for Caches AHB_
Top, AHB Master, Instruction cache, Data cache the free
running counters/timers of APB, ACE Controller, UART
and APB Bridge is done. The verification scenario in-
cludes Read and Write transfer phases of the APB which
are verified with the values of the count and reset. The
test cases done for the APB peripherals are ACE with
the mil_std_protocol, Timers for generation of inter-
rupt and watchdog reset, UART for transmitting and
receive messages, and interrupt registers for Reading
and Write. From the simulation results, the state of op-
eration of the AMBA is obtained. The overall coverage
obtained for the AMBA peripherals is 91.4%, and the
Assertion Coverage is 100%. This work can be extend-
ed by creating the verification environment for AMBA
with the UVM library. Questasim collects all coverage
data, code coverage, assertions, formal, and functional

Figure 8:Coverage report

D. D. N. Ponkumar.et al; Informacije Midem, Vol. 48, No. 4(2018), 205 – 211

211

coverage into a single highly efficient Unified Coverage
Database (UCDB) and makes them available in real-
time within the test bench.

5 Reference

1. “AMBA AHB”- specification by ARM limited.
2. AMBA timer data sheet, http://www.arm.com/.
3. ARM, “AMBA specification overview,” http://www.

arm.com/
4. Chris spear, SystemVerilog for Verification A Guide

To Learning the Test Bench Language Features,
2nd edition.

5. Golla Mahesh, Sakthivel S M “Verification IP for
an AMBA-AXI protocol using system Verilog”, In-
ternational Journal of Applied Engineering Re-
search, Vol.12, No.17, pp. 6534-6541,November
2017.

6. Golla Mahesh and Sakthivel.S.M, “Verification IP
for an AMBA-AXI Protocol using System Verilog”
International Journal of Engineering Research
and General Science, vol.3, no.1, pp.792-799, Feb-
ruary, 2015.

7. Han Ke, Deng Zhongliang, Shu Qiong “Verification
of AMBA bus model using SystemVerilog” The
Eighth International Conference on Electronic
Measurement and Instruments ICEMI’ 2007.
https://doi.org/10.1109/ICEMI.2007.4350567

8. Heli Shah P, Chinmay modi P, Bhargav Tarpara P
“Design & Implementation of Advance Peripheral
Bus Protocol,” International journal of scientific
engineering and applied science (IJSEAS) vol.1,
no.3, June 2015.

9. Manu B, Prabhavathi P, “Design and
Implementation of AMBA ASB APB bridge”
Proceedings of 2013 International conference
on fuzzy theory and its application national
Taiwan University of science and technology, pp.
6-8, December 2013. https://doi.org/10.1109/
iFuzzy.2013.6825442

10. Questa sim user’s manual, by Mentor Graphics.
11. Richa Sinha, Akhilesh Kumar, and Archanakumari

Sinha “Verification analysis of AHB-LITE protocol
with coverage,” International Journal of advances
in Engineering & technology, Vol.2, No.1, pp.121-
128, January 2012.

Arrived: 25. 04. 2018
Accepted: 03. 10. 2018

D. D. N. Ponkumar.et al; Informacije Midem, Vol. 48, No. 4(2018), 205 – 211

