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Abstract: The Residue Number System (RNS) characterize large integer numbers into smaller residues using moduli sets to enhance 
the performance of digital cryptosystems. A parallel Signed Residue Multiplication (SRM) algorithm, VLSI parallel array architecture 
for balanced (2n-1, 2n, 2n+1) and unbalanced (2k-1, 2k, 2k+1) word-length moduli are proposed which in turn are capable of handling 
signed input numbers. Balanced 2n-1 SRM is used as a reference to design an unbalanced 2k-1 and 2k+1. The synthesized results show 
that the proposed 2n-1 SRM architecture achieves 17% of the area, 26% of speed, and 24% of Power Delay Product (PDP) improvement 
compared to the Modified Booth Encoded (MBE) architectures discussed in the review of the literature. The proposed 2n+1 SRM 
architecture achieves 23% of the area, 20% of speed, and 22% of PDP improvement compared to recent counterparts. There is a 
significant improvement in the results due to the fully parallel coarsely grained approach adopted for the design, which is hardly 
attempted for signed numbers using array architectures. Finally, the proposed SRM modules are used to design {2n-1, 2n, 2n+1} special 
moduli set based RNS processor, and the real-time verification is performed on Zynq (XC7Z020CLG484-1) Field Programmable Gate 
Array (FPGA).
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Strojna implementacija množilnikov ostankov na 
osnovi predznačenega RNS procesorja za sisteme 
kriptiranja
Izvleček: Številski sistem ostankov velike celoštevilske cifre v manjše ostanke na osnovi setov modulov za povečanje učinkovitosti 
sistemov kriptiranja. Predlagan je algoritem vzporednega množenja predznačenih ostankov (SRM) v VLSI paralelni arhitekturi za 
uravnotežen (2n-1, 2n, 2n+1) in neuravnotežen (2k-1, 2k, 2k+1) modul dolžine besede. Uravnotežen SRM je uporabljen kot referenca 
za načrtovanje neuravnoteženega algoritma. Rezultati kažejo, da predlagana arhitektura zajema 17% prostora, 26% hitrosti in 22% 
izboljšanost PDP glede na trenutne arhitekture. Izboljšava je dosežena na osnovi paralelnega načrtovanja. Verifikacija v realnem času je 
izvedena na Zynq FPGA. 
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1 Introduction

In cloud computing and the Internet of Things (IoT), 
data security is one of the major concerns for service 
providers. Therefore a dedicated hardware cryptogra-
phy support is needed for modern electronic devices 
[1],[2],[3][4][5]. In recent years, Elliptic Curve Cryptog-
raphy (ECC) [6] has received scientific interest as it 

ensures more security through hard underlying math-
ematical problems. It leads to an increase in the length 
of the key, and as a result, performing faster arithmetic 
operations on larger integers have become the bottle-
neck problem. RNS based arithmetic operation [7,8] is a 
solution through which residue multiplication has be-
come the heart of computation architecture. The natu-
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ral defense offered by RNS against attacks is another 
reason for the selection of residue arithmetic as the 
prime candidate in cryptosystems [9,10].

Similarly to the above operation, modular exponentia-
tion [11] is a time-critical operation that is widely used 
in cryptographic algorithms like RSA. The modular 
exponentiation operation is performed in the form of 
residue multiplication. Therefore, the employment of 
efficient high-speed residue multiplication is vital in 
public-key encryption and decryption.  

Typical hardware implementation of the RNS based ap-
plication is dependent on the chosen moduli set. The 
selection of RNS Moduli [12] and the width of the resi-
due decide the efficiency and performance of the cryp-
tosystems. A {2n-1,2n,2n+1} special moduli set represen-
tation is a pairwise relatively co-prime standard RNS. 
These moduli set has a unique advantage in which two 
or more numbers do not have the same representation.  
Special moduli set shows better representational effi-
ciency [12] compared to that of other moduli set and 
also maintains a good balance between the different 
moduli in a given moduli-set. Based on the number of 
bits used to represent the input, moduli and residue 
output are classified into balanced and unbalanced 
word-length moduli multiplication [13] [14]. 

Modified Booth Encoded (MBE) modulo multiplica-
tion scheme is relatively faster and can handle both 
signed, and unsigned numbers, the researcher’s atten-
tion turned towards it, and many modifications of the 
same are reported in recent years [15,16,17,18,19,20]. 
The residue multipliers based on diminished-1 input 
representation in array and bit pair recoding booth al-
gorithm are seen in [16,17,21]. Based on the conducted 
survey, it is evident that there is no work based on a 
signed array modulo multiplication scheme reported in 
the literature. The reasons for the above could be based 
on the complexity in handling the Partial Product (PP) 
and poor speed performance. This is one of the reasons 
that have highly motivated us to attempt a proposal on 
an array-based high-speed area-efficient parallel SRM 
module for RNS. In this work, the high-speed perfor-
mance is achieved by a new multiplication methodol-
ogy incorporating parallelism in PP generation and ad-
dition process. 

Six significant contributions for this work include 
(i) an SRM algorithm for 2n-1, 2n+1 and 2n balanced 
word-length moduli  (ii) an SRM for 2k-1, 2k+1 and 2k  
unbalanced word – length moduli (iii) Mathematical 
modeling of SRM algorithm for each moduli (iv) VLSI 
characterization of proposed SRM algorithm in terms 
of high-speed area-efficient Carry Save Adder (CSA) 
architecture and very high-speed Han Carlson parallel 

prefix-based SRM array architecture (v) Functional veri-
fication of the proposed modules in FPGA and synthe-
sis in ASIC (vi) Design of RNS Processor to demonstrate 
the effectiveness of the proposed algorithm.

The paper is structured as follows: In Section 2, the re-
lated works connected to residue multipliers with vari-
ous moduli sets performance are analyzed. In Section 
3, characteristic equation, algorithm, and VLSI archi-
tecture are presented for both balanced (2n-1, 2n, 2n+1) 
and unbalanced (2k-1, 2k, 2k+1) word-length moduli. 
The design of the RNS processor is given in section 4. 
In section 5, Synthesis results, performance analysis, 
and RNS processor implementation are presented. The 
conclusion for the proposed work is drawn in section 6. 

2 Review of Existing Work

An MBE based 2n-1 multiplication module to reduce 
the number of PPs is presented in [22]. The results 
show a significant improvement in area and delay. 
However, they fail to address power consumption. A 
radix-8 booth encoded RNS 2n-1 multiplier [14] using 
unbalanced word length of moduli supporting size-
able dynamic range with adaptable delay to achieve 
less area and power consumption is presented. The 
same authors have designed a radix-8 2n-1 & 2n+1 mul-
tiplier with a balanced word length of moduli in [18] 
using various modulo properties. The author claims 
that less area and power are achieved by using CSA in 
[14] and parallel prefix adders in [18] for efficient addi-
tion operations with a slight increase in delay for lower 
bit width. Improved booth selector and encoder archi-
tecture consist of MUX, and the EXOR gate for the 2n-1 
MBE multiplication algorithm is presented in [23]. The 
architecture improves the speed performance and ef-
ficiency, but the introduction of MUX in selector archi-
tecture leads to a slight increase in area requirement, 
and also power consumption is not discussed. 

A compact ordinary array structure [15] based 2n+1 
multiplication scheme by grouping the PPs and modify 
the correction bit are presented. The PP is reduced by 
the CSA tree, and the final carry propagation addition 
is carried out by prefix structure in order to achieve 
better area and delay performance in which the power 
consumption is not discussed. By introducing a new PP 
formation scheme, a binary-weighted representation 
based modulo 2n+1 multiplier is presented in [19] and 
is extended to implement a multiply-add unit. The au-
thors have achieved less area and power consumption 
with similar delay performance compared to [15]. A ra-
dix-4 MBE architecture with a diminished-1 input rep-
resentation and dadda tree reduction scheme, which 



73

can handle zero operands with better speed and area, 
is discussed in [16]. A compressor structure is intro-
duced in [24] for PP reduction. This work achieves less 
power, delay, and consumes less area compared to [15].  

A hybrid input representation approach with a radix-4 
booth encoding scheme utilizing one binary-weighted 
operand and diminished-1 input representation for 
the other operand is explained in [17]. The architec-
ture supports both odd and even value of n. The au-
thors have achieved a compact area with an enhanced 
speed compared to the existing multipliers. The radix-8 
booth encoded 2n+1 multiplier for balanced word 
length moduli is designed in [18] using hard multiple 
generators, bias, and adders. The authors claim that the 
area and power reduction is accomplished compared 
to radix-4 and array type multiplier. However, there is 
an increase in operation time. In [20], the authors have 
improved the hard multiple generator method with a 
minimum number of bias terms compared to [18]. Two 
novel methods to increase the performance and to im-
prove the efficiency of the radix-8 modulo 2n+1 multi-
plier are explained in [20]. The first method significantly 
reduces the amount of bias, and the second one is new 
hard multiple generators based on a parallel-prefix 
structure computes carry only for odd positions. These 
schemes result in a lightweight parallel-prefix adder for 
the computation of triple the number with significant 
area-saving and improved fan-out. It achieves less area 
and power compared to the radix-8 booth multiplier 
[18].  There is an increase in HMG delay compared to 
[18] and almost maintains the same delay performance 
for multiplier operation compared to [18].

The problem in MBE based architecture is that it re-
quires an efficient booth selector and encoder com-
pared to the array-based architectures. The former 
scheme reduces the number of PPs and improves 
speed performance. However, it invites additional hard-
ware costs during implementation. Our proposed work 
is an entirely different approach compared to [18], [20] 
designed to address the above issues. In the proposed 
approach, split array type architecture is considered for 
implementing the 2n+1 operation, which occupies less 
area compared to the MBE scheme. Array architecture 
is a non-encoded architecture compared to the booth, 
so it does not require hard multiples for processing the 
PPs. The problem of an increased number of PPs in an 
array is addressed in the proposed scheme by splitting 
array structure into four segments, and full parallelism 
is maintained in PP additions also.  The parallelism in 
the architecture ensures improved speed by maintain-
ing the area advantage of the general array structure. 
The handling of signed numbers in array architecture 
is another reason for which the array scheme is less ex-
plored for data processing applications. The represen-

tation of signed numbers is addressed in the proposed 
architecture using appropriate constants.

3 Proposed Work

3.1 Proposed balanced word-length SRM

In balanced word-length modulo multiplication, the 
number of bits required representing the input, modu-
li, and output bits are summarized in Table 1.  The type 
mentioned above of multiplication called balanced res-
idue multiplication as it maintains a balanced bit-width 
between input, output, and moduli representation, as 
given in Table 1. In literature, the design problem of 2n-1 
and 2n+1 residue multiplication is achieved through 
MBE schemes, whereas the possibilities of addressing 
this problem using array architecture are hardly con-
sidered, especially for signed numbers. The hierarchical 
approach for signed array multiplication presented in 
[25]. The motivation behind this work is the regularity 
in VLSI implementation and the reduced area budget 
offered by the array architectures compared to MBE ar-
chitecture. The delay problem usually found in array ar-
chitecture compared to the MBE scheme is addressed 
here using hierarchy based processing of the input bits 
and parallel addition structure. For comparative analy-
sis, the adder structure is realized using CSA and Han 
Carlson parallel prefix [26] based schemes. The math-
ematical background, algorithm, and architecture of 
proposed residue 2n-1, 2n+1, and 2n multiplications are 
presented in the following subsections.

Table 1: Balanced word-length moduli representation

Moduli 2n-1 2n 2n+1

Number of input bits A & B n

Moduli representation bits n n n+1

Number of output bits - P n n n+1

Figure 1:  Intermediate PPs arrangement (nxn) [25]

3.1.1 Proposed  2n-1 SRM

The 2n-1 modulo multiplication module is one of the 
essential operations in the RNS independent arithme-
tic channel. The mathematical background, algorithm, 

E. Sekar et al.; Informacije Midem, Vol. 50, No. 2(2020), 71 – 86



74

and the proposed architectures for the signed 2n-1 resi-
due multiplier are given below.

Mathematical modeling
Consider the 2’s complement signed number represen-
tation of two binary numbers A and B as given in Eq. 
(1) & (2) 

 n=-2

n-1 i

n-1 i

i=0

A= -a 2 + a 2∑       (1)

 n=-2

n-1 i

n-1 i

i=0

B= -b 2 + b 2∑       (2)

The 2n-1 residue product representation is given in Eq. (3)

 

n

n

n-2

n-1 i

n-1 i

i=0

2 -1 n-2

n-1 i

n-1 i

i=0
2 -1

-a 2 + a 2 ×

P= A×B =

-b 2 + b 2

 
  

 
  

∑

∑
  (3)

Step 1. Partitioning of Input bits and Generation of in-
termediate PPs W, X, Y, Z using hierarchical partition-
ing multiplier [25]

Step 2. PP arrangement:
The generated PPs are arranged [25], and a constant is 
added, as shown in Fig. 1  where m=n/2.

Step 3. Rearrangement of Intermediate PPs:
Fig. 2 shows the rearrangement of PPs, and the addition 
process flow carried out for the 2n-1 residue multiplica-
tion, and the corresponding mathematical operations 
are given in Eq. (4) – (6). The notations and operators 
used in this mathematical modeling are summarized in 
Table 2 and Table 3 respectively.

Figure 2: PP Rearrangement and addition process 2n-1 
(nxn)

Table 2: Notations used in mathematical modeling

Notations Description 
AH, AL, BH, 

and BL
Higher and Lower bits of A & B inputs.

Cb Compensation Bits
Mi+1 || Mi Overflow bits of Mi-1 addition process

CyI1

One bit Carry of I1 addition process 
that has to be IEAC (Inverted End 
around Carry)

CyI2
One bit Carry of I2 addition process 
that has to be IEAC

CyI3
One bit Carry of I3 addition process 
that has to be IEAC 

R1c Carry Bit of R1 (or) Overflow bit of R1 
R2c Carry Bit of R2 (or) Overflow bit of R2

R3c Carry Bit of R3 (or) Overflow bit of R3

CyMi

n/2 Overflow carry bits of Mi addition 
process. If No overflow occurred n/2 
bit zeros is considered

CyQi
One bit Carry of  Qi  addition process 
that has to be IEAC 

Table 3: Operators used in mathematical modeling

Decimal Format: a=12; b=8; n=4
Binary Format: a=1100; b=1000; n=0100

Operator Description/  
Functionality Example Result

⋅ AND  ( )i  i  
a . b (1000)2

| OR  ( )i  i  
a | b (1100)2

 a NOT  a (0011)2

⋅ NAND  ( )i  i  
a . b (0111)2

 ⊕ EXOR  ( )i  i  
a  b⊕ (0111)2

 ⊕ EXNOR
 ( )i  i  
a  b⊕ (1000)2

+ Addition  ( )i  i  
a + b (20)10

  Modulus  
n

2 -1
a×b (6)10

  ∑ Summation
 3

i

i=0

a∑ (12)10

   ∑ ∑ Double 
Summation

 
( )

3 3

i+j

i  i  

j=0 i=0

a . b 2∑∑ (96)10

- Subtraction  ( )   
a - b (4)10
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a b Multiplication a b (96)10

X Multiplication  ( ) a × b (96)10

/ Division
 ( )n +1

2
(3)10

 ( )
n

-1

2 +1

× 
Multiplicative 

Inverse
 ( )

n

-1

2 +1

a×b (14)10

|| Concatenation  ( )   
a || b (11001000)2

 
 

( ) ( )
n n

i-1 i-1

i-1 i-1 1i-1 1i-1 1i-1

ni=1
i= +1

2

M = W +Z 2 + X +Y 2  ∑ ∑
 

( )
n

2

i-1 0 n-1

1i-1 1i-1

i=1

+ X +Y 2 +2 +2∑
  (4)

The final product is 

 
( )n

n

i-1

i-1 i-1 bi-12 -1

i=1

P = A×B = M +C 2∑    (5)

The compensation bits are expressed as 

 ( )( ) ( )( )n 2
i-1 i-1

bi-1 i-1i=1 i=1
C = Sub 2 + Add 2∑ ∑   (6)

Where

 
0 i+1 i 1 i+1 i

Ad =M  M  ; Ad =M  M ;i i  
i+1 i

Sub=M  Mi

Algorithm 
The proposed 2n-1 SRM algorithm is given below

generation stage, and adder stage. The four parallel 
modules in the intermediate PP generation stage M-I, 
M-II, M-III, M-IV indicates the hardware required for 
computing W, X, Y, Z given in [25]. The four independ-
ent parallel addition process observed in the architec-
ture is the main reason for achieving high performance 
in the proposed array architecture. The compensation 
bits are gets added in the final stage to obtain mod-
ulo results. CSA and Han-Carlson parallel prefix adder 
structure is incorporated in Fig. 3 in order to analyze 
the performance. The results of the proposed work are 
further discussed in Section 5.

Figure 3: Architecture of 2n-1 SRM

3.1.2. Proposed 2n+1 SRM

The 2n+1 residue multiplication problem is considered 
as a demanding operation in RNS Processor due to the 
increase in moduli output range compared to 2n and 
2n-1 multiplications, as represented in Table 1. In the 
proposed scheme, the increased moduli output range 
is regulated using the diminished-1 approach for both 
multiplier and multiplicand. The primary advantage 
of using the proposed scheme is that this architecture 
can handle exceptional cases like ‘all-zeros’ input and 

1.  Input: A & B (A, B → n-bit signed numbers),  
where n = 4,8,16,32,etc..

2.  Output  
n

2 -1
P A×B  ← , where P ← n bit

3.  Intermediate PPs Generation →W,X,Y,Z 

4.   Rearrange the Intermediate PPs into  
4 rows as in Fig. 1.

5.  Split the arrangement in Fig. 1 into two equal 
halves  
LSP (Least Significant Plane) ← Bit_Pos(0 to  (n-1)) 

 MSP (Most Significant Plane) ← Bit_Pos(n to (2n-1))

6.  Fold the MSP towards LSP side as given in Fig. 2.

7.  M ← Sum (LSP, Folded MSP, EAC)

8.  P ← Sum (M,Cb)

Architecture   
The architecture of proposed 2n-1 residue multiplica-
tion is shown in Fig. 3. The architecture consists of three 
stages, namely the partitioning stage, intermediate PPs 
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‘all-ones’ input, which consecutively produce the cor-
rect results. This architecture handles the bit positions 
higher than n-1 by complementing and mapping them 
to the LSBs. The mathematical background, algorithm, 
and the proposed architectures for signed 2n+1 residue 
multipliers are given in the below subsections.

Mathematical modeling 
The diminished-1 representation of binary inputs A and 
B are modified as A’ & B’, which is given in Eq. (7) – (8) 

 ( )n-2
n-1 i

n-1 ii=0
A = -a 2 + a 2 -1′ ∑    (7)

 ( )n-2
n-1 i

n-1 ii=0
B = -b 2 + b 2 -1′ ∑    (8)

The residue product P is given by the following Eq.(9)

 ( )n nb2 +1 2 +1
P= A×B = A' × B' +A +B +C′ ′   (9)

The methodology and arrangements of PP are the 
same as step 1 and step 2 of signed 2n-1, but the in-
puts are A’ and B’. The final product is obtained by rear-
ranging the PPs of Fig. 1 in such a way to obtain the 
result of 2n+1 residue multiplication.  Fig. 4 shows the 
rearrangement of PPs, the position of PPs, and the ad-
dition process flow carried out for the 2n+1 multiplica-
tion, and the same is represented in Eq. (10) – (20).  The 
mathematical operations performed between Row 1 to 
Row 4 are given below

Row 1:

 ( )( )n i-1
1(i-1) i-1 1i-1i=1
I = W +Z 2 +1∑                   (10)

 ( ) ( )n i-1 0
1(i-1) 1(i-1) I1i=1
R = I 2 + Cy 2∑                   (11)

Row 2:
 
 

( ) ( )( )( ) ( )
nn i-1 i-12n 1(m+i-1)2 i-1 1 i- m+1i= +1 i=1

2
I = X 2 + X 2 

  ∑ ∑
 

( ) ( )
nn i-1 i-12ni= +1 i=1

2
+ 1 2 + 0 2 +1 

  ∑ ∑
 (12)

 ( ) ( )n i-1 0
2(i-1) 2(i-1) I2i=1
R = I 2 + Cy 2∑                   (13)

Row 3:
  
 

( ) ( )( )( ) ( )( )nn i-1 i-12n3 i-1 1 m+i-11 i- m+1i= +1 i=1
2

I = Y 2 + Y 2 
  ∑ ∑

 
( ) ( )

nn i-1 i-12ni= +1 i=1
2

+ 1 2 + 0 2 +1 
  ∑ ∑

   (14)

 ( ) ( )n i-1 0
3(i-1) 3(i-1) I3i=1
R = I 2 + Cy 2∑                 (15)

Row 4: 

 ( ) ( )n-1
n-1 i-1

4(i-1) i=1
R = 0 2 + 1 2∑                    (16)

Figure 4: PP Rearrangement and addition process 2n+1 (nxn)

Finally, all four rows get added as per the following 
equations.

( )n
i-1

(i-1) 1(i-1) 2(i-1) 3(i-1) 4(i-1) i-1 i-1i=1
∑    (17)

 ( )( ) ( )n 2
i-1

i-1 i-1 bi-1 Mi-1i=1 i=1
Q = M +C 2 + Cy  ∑ ∑
 ( ) ( )( )2 n

i-1 i-1

Mi-1i=1 i=3
+ Cy 2 + 1 2 +1∑ ∑

  (18)

Where Cb is given in Eq. (19) 

 ( )( ) ( )( )n 2
i-1 i-1

bi-1 i-1 i-1i=3 i=1
C = 1 2 + Ad +Sub 2 +1∑ ∑

 [ ] [ ]'

1
Ad =A' n-1  | B n-1

 ( ) ( ) ( )1 1c 2c 2c 3c 3C 1c
Sub = R R | R R | R R⋅ ⋅ ⋅

 [ ] [ ]0
Ad =A' n-1   B' n-1⊕

 ( )0 1c 2c 3c
Sub = R R R⊕ ⊕

          (19)
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The 2n+1 multiplication is given in Eq. (20)

 
[ ] ( )( )n

n
i-1

Qin:0 i-12 1 i=1
P = A×B = Q 2 +Cy+ ∑              (20) 

Algorithm 
The proposed 2n+1 SRM algorithm is given below

 ( )n

2m-1 2m-1
i k

i k-m k-m2 i=0 k=m
P= A×B = W 2 + X +Y 2∑ ∑   (23)

3.2 Proposed unbalanced word-length SRM

The unbalanced word-length moduli multiplier typi-
cally used in applications different bit-width propor-
tion between input, moduli, and output is required. In 
unbalanced word-length residue multiplication, the 
number of bits required to represent the input, moduli, 
and output bit-width, which are summarized in Table 4.  
The strategy followed to design 2k-1module is derived 
from the 2n-1 balanced module. However, the 2k+1 is 
not derived from the 2n+1 balanced module because it 
may lead to comparatively complex architecture with 
more delay penalty. Instead, 2n-1 balanced design is 
converted to an unbalanced 2k+1 by modifying the fi-
nal result of 2n-1 multiplication. 

1.  Input: A & B (A, B→ n-bit signed numbers), 
where n=4,8,16,32,etc..

2.  Output  n
2 +1

P A×B← , where P ← n+1 bit

3.  A’ ← Diminished-1 (A); B’ ← Diminished-1 (B);

3.  Intermediate PPs Generation →W,X,Y,Z

4.   Rearrange the Intermediate PPs into 4 rows as 
shown in Fig. 1.

5.  Split the arrangement in Fig. 1 into  
LSP ← Bit_Pos(0 to (n-1))  
MSP ← Bit_Pos (n to (2n-1))

6.  Fold the MSP towards LSP as given in Fig. 4.

7.  R1←Sum (LSP, 2’s Comp. (MSP), IEAC);

8.  R2←Sum (LSP, 2’s Comp. (MSP), IEAC);

9.  R3←Sum (LSP, 2’s Comp. (MSP), IEAC);

10.  R4←Sum (LSP, 2’s Comp. (MSP), IEAC);

11.  M ← Sum ((Rx,) A’, B’), where x =1,2,3,4

12.  P ← Sum (M, 2’s Complement (CyMi),Cb, IEAC)

Architecture 
The overall architecture arrangement of 2n+1 is similar 
to that of 2n-1 except for the fact that it has some ad-
ditional modules to perform 2’s complement operation 
and Inverted End Around Carry (IEAC), as shown in Fig. 
5. However, the compensation generation scheme is 
complicated compared to 2n-1 architecture. 

3.1.3 Signed 2n residue multiplier

Mathematical modeling 
The operation required to obtain Module I (W) follows 
the same pattern as in 2n-1. The X & Y are given in Eq. 
(21) and (22). Z is not required for computing 2n be-
cause it has a higher weight position compared to 2n 
value.

 ( ) ( ) ( )n-2 m-1  n-1-j
m-1 i-m i+j-m

n-1 0 i 0 i ji=m j=1 i=m
X= a b 2 + a b 2 + a b 2⋅ ⋅ ⋅∑ ∑ ∑    (21)

  ( ) ( ) ( )n-2 m-1  n-1-j
m-1 i-m i+j-m

n-1 0 i 0 i ji=m j=1 i=m
Y= b a 2 + b a 2 + b a 2⋅ ⋅ ⋅∑ ∑ ∑  (22)

The final 2n product is given in Eq. (23)

Figure 5: Architecture of 2n+1 SRM
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Table 4: Unbalanced word-length moduli representa-
tion

Moduli 2k-1 2k 2k+1
Number of input bits A & B n
Moduli representation bits k k k+1

Number of output bits -P k k k+1

3.2.1. Proposed 2k-1 and 2k+1 SRM

Mathematical modeling
Let us consider the n bit output of balanced 2n-1 mul-
tiplication given in Eq. (5). It is split into two halves PL 
and PH, as shown in Fig. 6 to obtain the result k=n/2 & 
k=n/4 bits, and the corresponding equations are given 
in (24) – (25). 

For k=n/2

 

( )
L

n

H

n
P =P -1:0

2
2 -1 Output

n
P =P n-1:

2

 
  


 
  

 

( )

n

i-1
2

i-1 i-1 ni=1 +i-1 k
2

n

i-1 0
2

i-1 i-1 outi=1

UP = P +P 2

2 -1

P2 = UP 2 +C 2

 
    



∑

∑
                 (24)

 

[ ] ( )

n

i-1 0
2

i-1 i-1 ni=1 +i-1 k
2

n

i-1 0
2

i-1 outk:0 i=1

UP = P +P 2 +2

2 +1

P2 = UP 2 +C 2

 
    



∑

∑
  

Figure 6: Unbalanced PP Rearrangements and addi-
tion process

For k=n/4
k=n/4 design is derived from k=n/2. The output of 
k=n/2 acts as an input for the k=n/4 design.

 

( )
L

n

H

n
P2 =P2 -1:0

2
2 -1 output

n
P2 =P2 n-1:

2

 
  


 
  

 

( )

n

i-1
2

i-1 i-1 ni=1 +i-1 k
2

n

i-1 0
2

i-1 i-1 outi=1

NP = P2 +P2 2

2 -1

P4 = NP 2 +C 2

 
    



∑

∑
                  (25)
 

 

[ ] ( )

n

i-1 0
2

i-1 i-1 ni=1 +i-1 k
2

n

i-1 0
2

i-1 outk:0 i=1

UP = P2 +P2 2 +2

2 +1

P4 = UP 2 +C 2

 
    



∑

∑

Algorithm
The proposed SRM algorithm for the unbalanced 2k-1 
and 2k+1 is given below

1.  Input: A & B (A, B → n bit signed numbers), where 
n=4,8,16,32,etc..

2.  Output  
 

P A×B← , where P ← k bit for- 2k-1 and 
k+1 bit for 2k+1

3.  Consider Eq.(5) -  
n

2 -1
P A×B← ,

4.  Split the Eq. (5) into two equal halves  
PH ← Bit_Pos(0 to (n/2)-1)  
PL ← Bit_Pos((n/2) to n-1)

5.  Fold the PH towards PL side as mentioned in Fig.  6.

If (2k-1) Operation

6.  P2 = Sum(PL, PH, EAC ) → k=n/2

7.  P4 = Sum(P2L, P2H, EAC ) → k=n/4

8.  P8 = Sum(P4L, P4H, EAC ) → k=n/8

If (2k+1) Operation

6.  P2 = Sum(PL, 2’s (PH), EAC ) → k=n/2

7.  P4 = Sum(P2L, 2’s (P2H), EAC ) → k=n/4

8.  P8 = Sum(P4L, 2’s ( P4H), EAC ) → k=n/8

Architecture  
The unbalanced SRM architecture for 2k-1 and 2k+1 is 
depicted in Fig. 7. The architecture is derived from pro-
posed 2n-1 SRM.  
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Figure 7: Architecture of 2k-1 & 2k+1 SRM

3.2.2.  2k SRM

The residue multiplication 
2

| | kP A B= × is derived from a 
2n balanced residue multiplier equation. The character-
istic equations of 2k unbalanced residue multiplication 
are given in Eq. (26)

 
( )

( )

( )

k

n

i-1
2

i-1 i-1i=1

n

i-1
4

i-1 i-12 i=1

n

i-1
8

i-1 i-1i=1

n
RP = P 2 k=

2

n
P= A×B = P4 = P 2 k=

4

n
P8 = P 2 k=

8

→

→

→










∑

∑

∑

    (26)

4 RNS processor

4.1 Architecture

In general, the cryptographic algorithm requires many 
rounds of arithmetic operations in order to create the 
ciphertext. Instead of doing such lengthy arithmetic 
operations in binary representation, residue values 
can be used to save the area and time budget. The pro-
posed balanced and unbalanced word-length residue 
multipliers are used for implementing special moduli 
set based RNS computing platforms, as given in Fig. 
8. The RNS processing system consists of three blocks, 
namely Forward Converter (FC), Independent Modulo 
Arithmetic Processing Unit (IMAPU), and Reverse Con-
verter (RC) [13], [27]. The proposed SRM architectures 
are used to design arithmetic channels and RC. The FC 
and RC blocks convert the binary number to residue 
number and vice versa. The IMAPU block consists of 
application-based arithmetic operations or any other 
desired operations in modulo representation. The RC 
operation can be performed using the Chinese Re-
mainder Theorem (CRT) [28] or Mixed Radix Conversion 
(MRC) [29]. In this paper, the MRC technique [13,27] 
is considered for the conversion in the RC block. The 
characteristic equations of MRC given in Eq. (27) – (29) 
shows that the operation can be done by modulo sub-
tractions, multiplicative inverses, and residue multi-
plication. Here the multiplicative inverse is computed 
using the Extended Euclidean algorithm (EECD) [30]. 
From  [13,27] the decoded number is expressed in the 
following form for MRC technique

 
N N-1 N-2 1 3 2 1 2 1 1

X=Z m m m + +Z m m +Z m +Z⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅   (27)

where  
i i

The mixed-radix digits are derived as,

 

 
1 1

Z =x

 ( )
2

2

-1

2 1 2 1
m

m

Z = m × x -Z

 ( ) ( )
3

3

-1

3 2 1 3 2 1 1
m

m

Z = m m × x -Z m +Z  

                 (28)
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The finalized equation is derived for the value of N bit 
as,

 ( )
N

-1

N 1 2 3 N-1
m

Z = m m m m⋅⋅⋅⋅⋅⋅⋅⋅
                 (29)

Where m1,m2,m3 are moduli sets, and x1, x2, x3 are resi-
due output of IMAPU.

Figure 8:  Hardware realization of signed RNS processor

The effectiveness of the proposed multiplier is tested 
by designing decoupled modulo arithmetic channels 
and memoryless MRC reverse converter, as shown in 
Fig. 8.  An example calculation depicting the dataflow 
in the architecture is given in Table 5.

Table 5: RNS processor computation

A=600                                  B=600                        m1=255                      m2=256                       m3=257
Forward Conversion

a1=|600|255=90 a2=|600|256=88 a3=|600|257=86
b1=|600|255=90 b2=|600|256=88 b3=|600|257=86

IMAPU
x1=|90x90|255= 195 x2=|88x88|256=64 x3=|86x86|257= 200

MRC based Reverse Conversion

Z1 = 195
                                      Z2 = ||255|-1

256x(64-195)|256

                                           = |255x-131|256

                                           = 131
Z3 = |(||255|-1x|256|-1|257)x(200- (131x255)+195)|257

     = |32768x(200-33600)|257

     = 5

X=(5x255x256)+ ((131x255)+195)
   =326400+33405+195
X=360000
X=3,60,000

4.2 Range analysis

The permissible number ranges for balanced and un-
balanced word-length residue multipliers are shown 
in Table 6. The bit-width required to represent triple 
moduli set {2n-1, 2n, 2n+1} balanced system is 3n+1bits 
whereas the maximum number of bits required for un-
balanced moduli {2k+1,2k, 2k-1} system is 3k+1.

5 Results and Discussions

5.1 FPGA synthesis

The architecture level functional verification of the pro-
posed design is coded using Verilog HDL and simulated in 
the Xilinx ISIM tool. The results corresponding to hardware 
architectures are synthesized in Xilinx Synthesis Technol-
ogy (XST) for balanced and unbalanced type residue mul-
tipliers. The results of the proposed architecture with CSA 
(Proposed-I) and prefix-based adders (Proposed-II) are 
presented in Table 7 and Table 8, respectively. 

Table 7: FPGA synthesis results of balanced word-length SRM

Multiplier n

Xilinx Zynq FPGA Board        
(XC7Z020CLG484-1)

Proposed - I Proposed - II
LUT

(No’s)
Delay 
(ns)

LUT
(No’s)

Delay 
(ns)

2n
8 37 11.5 37 11.4

16 186 26.2 203 21.7
32 928 70.3 1026 45.1

2n-1
8 112 18.6 144 17.7

16 530 51.3 697 28.7
32 2134 155.7 2848 53.0

2n+1
8 235 29.4 270 27.4

16 688 85.8 861 44.1
32 2215 196.7 3705 79.8
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Table 6: Range analysis of triple moduli set RNS processor

Balanced Word-Length Moduli Unbalanced Word-Length Moduli
Moduli 2n-1 2n 2n+1 2k-1 2k 2k+1

Number of Input Bits – A & B n
Number of Output Bits -P n n n+1 k k k+1

Permissible Number Range

Input Range 
(Signed Integers)

                                                                                        

 n n
2 2

- -1
2 2

↔
 
 
 

Input Range 
(Unsigned Integers) [0 ↔ 2n-1]

Output Range -P [0 ↔ 2n-2] [0 ↔ 2n-1] [0 ↔ 2n] [0 ↔ 2k-2] [0 ↔ 2k-1]  0 ↔ 2k]
Dynamic Range of the Moduli R= {23n-2n }  R= {23k-2k }

Permissible Range 
(Signed Integers)

 
 ( ) ( ) ( )

3n n 3n n
2 -2 2 -2

R= - -1 Even n
2 2

↔ →
         
    

 ( ) ( ) ( )
3n n 3n n

2 -2 -1 2 -2 -1

R= - Odd n
2 2

↔ →
         
  

  ( ) ( ) ( )
3k k 3k k

2 -2 2 -2

R= - -1 Even k
2 2

↔ →
         
  

 ( ) ( ) ( )
3k k 3k k

2 -2 -1 2 -2 -1

R= - Odd k
2 2

↔ →
         
  

Permissible Range 
(Unsigned Integers)

 ( ){ }3n n
R= 0 2 -2 -1↔

 
 ( ){ }3k k
R= 0 2 -2 -1↔

 

Table 8: FPGA synthesis results of unbalanced word-length SRM 

Mul. n

Zynq FPGA Board  (XC7Z020CLG484-1)

k=n/2 k=n/4 k=n/8
LUT (No’s) Delay (ns) LUTs (No’s) Delay (ns) LUT (No’s) Delay (ns)

Proposed -I

 2k

8 6 8 - - - -
16 41 15 5 7.9 - -
32 250 43 41 13.2 5 7.9

2k-1
8 120 20 - - - -

16 645 67 654 68.8 - -
32 2577 162 2597 166.5 2605 168

2k+1
8 121 19 - - - -

16 649 70 654 78.1 - -
32 2587 173 1580 176.0 2599 179

Proposed -II

 2k

8 5 8 - - - -
16 44 13 5 7.8 - -
32 255 25 44 15.0 5 7.8

2k-1
8 156 18 - - - -

16 735 52 753 55.0 - -
32 2967 157 3018 61.9 3049 164

2k+1
8 163 21 - - - -

16 960 54 980 36.0 - -
32 2996 160 3056 162.5 3081 165

*LUT – Look Up Table & LE- Logic Element
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Table 9: ASIC synthesis results of balanced word-length SRM 

Mul. n

Technology
180 nm 90 nm 45 nm

Area 
(µm2)

Power 
(µW)

Delay  
(ns)

PDP
(pJ)

Area 
(µm2)

Power 
(µW)

Delay 
(ns)

PDP
(pJ)

Area 
(µm2)

Power 
(µW)

Delay 
(ns)

PDP
(pJ)

2n

Proposed - I
8 2164 217 1.3 0.3 682 30 0.8 0.02 369 20 0.5 0.0

16 10438 1677 7.4 12 2967 308 4.2 1.3 1604 200 3.6 0.7
32 39171 6095 26.8 163 12273 1218 15.2 18.5 6557 739 13 9.4

Proposed - II
8 2044 228 1.2 0.3 652 51 0.8 0.0 357 32 0.8 0.0

16 11302 1809 6.7 12 3167 407 4.7 1.9 1712 232 4.1 1.0
32 45784 6316 23.5 148 15787 1264 16.7 21 8435 769 14 10.7

2n-1

[22]
8 8668 849 6.8 6 2733 169 4.2 1 1477 108 4.0 0.43

16 34382 4328 29.1 126 9770 797 16.4 13 5281 513 14.3 7
32 125346 19176 86.5 1658 39270 3835 48.9 188 20981 2323 41.2 96

[14]
8 8148 781 6.2 5 2569 156 3.8 1 1389 101 3.7 0.37

16 32663 3983 26.5 105 9282 732 15.0 11 5017 473 13.0 6
32 119079 17259 78.7 1357 37306 3452 44.5 154 19932 2089 37.5 78

[23]
8 8235 798 6.4 5 2597 158 3.9 1 1404 103 3.8 0.38

16 32663 4069 27.0 110 9282 748 15.3 11 5017 483 13.3 6
32 117825 18025 80.4 1449 36913 3607 45.5 164 19722 2185 38.3 84

Proposed - I
8 6518 789 5.1 4 2055 163 3.2 1 1111 124 3.1 0.38

16 26447 4058 22.2 90 7516 824 12.5 10 4063 537 10.9 6
32 97926 18282 67.0 1225 30679 3689 37.9 140 16392 2211 31.9 71

Proposed - II
8 6708 809 4.7 4 2081 169 2.8 0 1141 127 2.8 0.35

16 28937 4147 20.1 83 8120 845 11.3 10 4389 548 9.7 5
32 114459 18447 58.8 1084 35859 3722 33.7 125 19159 2234 27.5 61

2n+1

 [21]
8 17659 1058 13.8 15 5588 209 8.6 2 3020 135 8 1

16 63121 5999 56.5 339 18179 1104 31.6 35 9827 713 27.8 20
32 254585 30713 170 5221 79827 6145 96 590 41349 3719 81 301

 [15]
8 15365 1049 13.6 14 4874 207 8.3 2 2634 135 8 1

16 59211 5894 54.9 324 16899 1085 31 34 9135 699 27 19
32 237894 28951 168 4864 73352 5792 95 550 39659 3508 80 281

 [16]
8 13961 944 11.1 10 4402 188 6.8 1 2380 122 6.6 1

16 53425 5216 51.6 269 15182 961 29.1 28 8207 618 25.4 16
32 210141 25176 159.6 4018 65835 5036 90.3 455 35175 3049 76 232

 [17]
8 13251 870 12.2 11 4142 173 7.5 1 2239 112 7.2 1

16 52376 4658 46.7 218 14871 859 26.4 23 8039 554 23 13
32 224280 22582 141.1 3186 68951 4518 79.8 361 37280 2736 67.2 184

 [18]
8 12565 954 13.3 13 3962 190 8.2 2 2142 122 7.9 1

16 48617 5306 57 302 13816 977 34 33 7468 629 29 18
32 187025 26057 155 4039 58593 5211 81 422 31305 3155 78 246

 [19]
8 15058 975 14 14 4776 194 9 2 2582 125 8.5 1

16 52698 5130 55.1 283 15040 945 32 30 8130 610 28 17
32 166526 23163 154 3567 51347 4633 80 371 27762 2805 74 208

 [20]
8 8796 916 12.4 11 2773 182 8.3 2 1499 118 7.4 1

16 38893 4882 44.6 218 11053 899 26.6 24 5974 581 22.5 13
32 158971 21889 134.7 2948 49804 4379 64.7 283 26610 2650 60.5 160

Proposed - I
8 8356 908 11.7 11 2635 186 7.9 1 1424 143 7.1 1

16 33059 4787 41.4 198 9395 972 24.5 24 5078 637 20.2 13
32 122408 21797 120.2 2620 38349 4439 57.6 256 20489 2670 55.6 148

Proposed - II
8 8831 929 11 10 2825 192 7.2 1 1495 148 6.5 1

16 36171 4841 37 179 10279 1004 22 22 5556 653 18.1 12
32 143074 22127 102 2257 44857 4472 50.7 227 23982 2683 49.8 134
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5.2 ASIC synthesis

5.2.1 Performance analysis

From Table 9, the area comparison of 2n-1 SRM shows 
that the proposed architecture I & II requires less area 
compared to other multipliers [14][22][23]. The synthe-
sis results show that the proposed design I occupy 17% 
- 22%, and design II occupies a 10% lesser area than 
existing modulo MBE. Delay analysis indicates that the 
proposed-I has a 17% - 24% speed improvement, and 
Proposed-II excels in speed by 26% - 30%. Power analy-
sis shows that the total power required for the design is 
almost the same compared to recent works.

In 2n+1 SRM architectures, the proposed designs out-
performs the other multipliers in area efficiency and 
speed improvement [15,16,17,18,19,20,21]. Proposed 
architecture I save area in the range of 23% - 44%, 
whereas the proposed architecture II reduces the area 
in the range of 10% - 32% compared to existing MBE 
architectures. The speed improvement of proposed-I 
and II lies between the ranges of 10% - 35% and 20% 
– 39%, respectively. The power profiles of the proposed 

multipliers are almost the same as that of recent works. 
Since the proposed unbalanced residue multipliers are 
derived from proposed balanced residue multipliers, 
they follow the same trend in the area, delay, and pow-
er metrics, which are presented in Table 10.

The core problem addressed in this work is the im-
provement of speed performance of residue signed 
array multiplier, which generally consumes less area 
than its booth type counterparts. To achieve this objec-
tive, an enormous parallel operation from start to end 
is envisioned, designed, and implemented. It is inferred 

Table 10: ASIC results (90 nm) of unbalanced word-length SRM

Mul. n
k=n/2 k=n/4 k=n/8

Area 
(µm2)

Power 
(µW)

Delay  
(ns)

PDP
(pJ)

Area 
(µm2)

Power 
(µW)

Delay 
(ns)

PDP
(pJ)

Area 
(µm2)

Power 
(µW)

Delay 
(ns)

PDP
(pJ)

2k

Proposed 
- I

8 173 11.4 0.7 0.01 - - - - - - - -
16 640 32 2.5 0.08 124.2 5.4 1.6 0.01 - - - -
32 3224 241 8.0 1.93 739.2 26.4 5.8 0.15 142 13 1.5 0.02

Proposed 
- II

8 110 3.8 0.7 0.00 - - - - - - - -
16 637 45 2.7 0.12 110.7 10.7 1.5 0.02 - - - -
32 3564 254 8.5 2.16 732.6 36 4.5 0.16 129 20 2.6 0.05

2k-1

Proposed 
- I

8 2172 181 3.6 1 - - - - - - - -
16 7757 905 14.1 13 8146 934 15.2 14.2 - - - -
32 31413 3953 42.15 167 32984 4085 45.2 184.7 33314 4142 47 195

Proposed 
- II

8 2196 186 3.3 1 - - - - - - - -
16 8405 950 12.8 12 8659 986 13.9 13.7 - - - -
32 36643 3993 36.8 147 37742 4145 39.5 164 38122 4188 41 173

2k+1

Proposed 
- I

8 2212 203 3.7 0.7 - - - - - - - -
16 7846 964 14.3 14 8084 996 15.3 15 - - - -
32 31634 4043 42.6 172 32584 4184 45.5 190 32911 4241 48 204

Proposed 
- II

8 2240 209 3.6 0.7 - - - - - - - -
16 8575 1021 13.4 14 8821 1053 14.4 15 - - - -
32 36924 4142 38.2 158 38402 4264 40.1 171 39937 4323 45 192

Figure 9: Simulation result of RNS processor
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from the analysis that proposed designs have signifi-
cant improvement in speed and area performance. 

5.2.2 Hardware Implementation of RNS Processor

RNS processing examples discussed in Section 4 and 
the architecture is shown in Fig. 8 is simulated, and 
ISIM simulated results are shown in Fig. 9. The synthesis 
of the RNS Processor is done for both FPGA and ASIC 
platforms. The results for the same are presented in 
Table 11. The synthesized netlist of the RNS processor 
is implemented by targeting to the Xilinx Zynq board 
(XC7Z020CLG484-1). 

6 Conclusion

A new array signed residue multiplication scheme for 
balanced (2n-1, 2n+1, 2n) and unbalanced (2k-1, 2k+1, 
2k) word-length moduli are proposed in this paper. 
The proposed architecture with enormous parallelism 
is realized by incorporating CSA and Han-Carlson pre-
fix adder structures into it. The existing and proposed 
multipliers are synthesized in both ASIC and FPGA 
technologies. From the synthesis results, the proposed-
I 2n-1 residue multiplication scheme saves 17% area. 
However, the scheme with prefix structure achieves 
26% speed and 24% PDP improvement compared to 
state of the art MBE 2n-1 residue multipliers. Similarly, a 
balanced 2n+1 proposed-I saves 23% area requirement. 
Speed and PDP improvement of proposed-II is 20% and 
22 %, respectively, compared to the state of the art 2n+1 
residue multipliers. The unbalanced multipliers derived 
from the balanced multiplier follows the same trend. 
Finally, the proposed residue arithmetic modules are 
used in arithmetic channel creation, reverse converter 
design of {2n-1, 2n, 2n+1} triple moduli set RNS Processor 
and the same is implemented as hardware using Zynq 
(XC7Z020CLG484-1) device for real-time verification. 
The results indicate that the proposed designs can be 

efficiently utilized to improve the speed and area per-
formances of RNS based cryptographic applications 
like RSA and ECC. The results also show that the pro-
posed-I SRM architecture implemented using CSA may 
be used for area constrained RNS applications, and the 
Proposed-II SRM architecture using prefix can be used 
for high-speed applications.
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