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Abstract: In this work, we propose a resistorless realization of a simple electronically adjustable capacitance multiplier circuit using 
a single voltage differencing gain amplifier (VDGA) as an active building block.  The circuit utilizes one VDGA and only one capacitor 
in a simple circuit configuration. The proposed capacitance multiplier circuit can be tuned electronically with the adjustment of 
the transconductance gains of the VDGA.  To emphasis the applicability of the proposed circuit, a second-order RC low-pass filter is 
constructed as an application example.  PSPICE simulations are performed to verify the theory.  
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Elektronsko nastavljiv kapacitivni množilnik 
z enojnim napetostnim diferencialnim 
ojačevalnikom (VDGA)
Izvleček: V članku je predstavljen enostaven elektronsko nastavljiv kapacitiven množilnik z diferencialnim ojačevalnikom (VDGA) brez 
uporabe uporov. Vezje vključuje en VDGA in le en kondenzator. Predlagan kapacitivni množilnik je elektronsko nastavljiv s pomočjo 
spreminjanja transkonduktančnega ojačenja VDGA. Kot primer uporabe je predstavljen nizkopasovni RC filter drugega reda. Teoretični 
zaključki so preverjeni s PSPICE simulacijami.

Ključne besede: Napetostni diferencialni ojačevalnik (VDGA); kapacitiven množilnik; elektronska nastavljivost; aktivna vezja
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1 Introduction

Integrable high-valued capacitances are necessary 
and often used in several analog integrated applica-
tions, such as sensor interfacing circuits, monolithic 
phase-locked loops, sample-and-hold data systems, 
and implantable biomedical systems [1-3]. However 
in fully integrated circuit design, the fabrication of 
the large-valued capacitors is an essential problem, 
due to their large occupation of fractional die ar-
eas for standard silicon-based technology [4-5]. A 
possible solution is the implementation of high ca-
pacitance values from smaller ones by the use of a 

capacitance multiplication technique. This justifies the 
development, in the last few decades, of various circuit 
techniques to implement grounded and floating ca-
pacitance multiplier circuits with some active elements 
like second-generation current conveyors (CCIIs) [6-11], 
current feedback operational amplifiers (CFOAs) [12-
13], operational transconductance amplifiers (OTAs) 
[14-15], current follower transconductance amplifiers 
(CFTAs) [16], current differencing transconductance 
amplifiers (CDTAs) [17], current backward transcon-
ductance amplifiers (CBTAs) [18], differential voltage 
current conveyors (DVCCs) [19], DVCC-transconduct-
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ance amplifiers (DVCCTAs) [20], and voltage differenc-
ing buffered amplifiers (VDBAs) [21].

Circuits from [8-16], [18-19], [21] employ at least two 
active components. The active element-based capaci-
tance multipliers proposed in [6], [8-10], [12-13], [17-
21] are designed with two or more passive elements. 
These would need relatively high power dissipation 
and large silicon area on the chip. In the literature [8-9], 
[14-15], the capacitance multiplier realizations with dif-
ferent active components have been proposed. Moreo-
ver, the available active capacitance multipliers in [6-
10], [12-13], [19], [21] are not programmable.

This paper proposes a voltage differencing gain ampli-
fier (VDGA)-based capacitance multiplier circuit. The 
circuit is realized with only one VDGA together with 
one floating capacitor.  No need for strict component-
matching conditions is required. The equivalent capaci-
tor value is electronically tunable by changing the ratio 
of the VDGA transonductances. The effects of the VDGA 
non-idealities are also discussed and evaluated. To con-
firm the analytical calculation, the simulation results 
with TSMC 0.25-µm CMOS technology are reported.

2 Description of the VDGA

The VDGA, whose circuit symbol is represented in Fig.1, 
is a recently reported active building block introduced 
in [22]. In ideal operation, the behavior of the VDGA el-
ement can be characterized by the matrix equation: 
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where gmA and gmB denote the transconductance gains 
and β represents the voltage gain of the VDGA.  Inter-
nal structure of the VDGA based on MOS transistors is 
depicted in Fig.2 [22].  The circuit comprises by three 
floating current sources (FCSs) M1A-M9A, M1B-M9B and 
M1C-M9C. Each of them realizes independent tunable 
transconductance gain gmk, (k = A, B and C).  The value 
of gmk can be determined by: [23]
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where

Bkik KIg = ,  for i = 1,2, 3, 4.   (3)

In equation (3), K is the transconductance parameter 
of the transsitor and IBk is an external DC bias current. 
It is worth mentioning that the transconductance gmk 
is tuned electronically by changing the bias current IBk.  
The FCS M1A-M4A allows for having the differential-input 
voltage to current converter by iz = gmA(vp-vn), while the 
FCS M1B-M4B performs the transconductance amplifier 
action between the z and x terminals (i.e. ix = gmBvz). Fur-
thermore, a pair of FCSs M1B-M4B and M1C-M4C allows us 
to obtain a current-controlled voltage amplifier behav-
ior (vw = βvz) with the voltage transfer gain equal to β = 
gmB/gmC. Of course, the gain β can be adjusted simple by 
setting the gmB to gmC ratio.

Figure 1: Schematic symbol of the VDGA.

3 Proposed capacitance multiplier 
circuit

The proposed topology of the capacitance multiplier 
with a single VDGA is shown in Fig.3. It consists of only 
one VDGA and one floating capacitor.  Although the 
floating capacitor is required, it can be implemented 
using metal-oxide-metal (MOM) double poly (poly1-
poly2) or metal-insulator-metal (MIM) capacitor pro-
cess [24].  Considering the VDGA port relation (1), the 
input impedance of the proposed capacitance multi-
plier circuit is 
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where the simulated equivalent capacitance Ceq is 
equal to: 
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It is clear that the proposed circuit in Fig.3 implements 
a variable capacitance multiplier with a capacitance 
multiplication factor given by: 

mC

mA

g
gK +=1 .     (6)

With this expression, the capacitance multiplication 
factor K is scaled electronically by setting the transcon-
ductance ratio gmA/gmC.

Figure 3: Proposed capacitance multiplier circuit         
and its equivalent circuit.  

Figure 4: Non-ideal behavior model of the VDGA with 
terminal parasitics.

4 Analysis of non-ideal behavior

Deviations from the ideal circuit performance are main-
ly due to the voltage and current transfer inaccuracies 
and the parasitics of the VDGA.  The non-ideal transfer 
gains of an actual VDGA are expressed as:
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where αA and αB are the non-ideal transconductance 
gains and δ is the non-ideal voltage transfer gain. If 
these non-ideal transfer gains are considered, then the 
non-ideal input impedance can be rewritten as:
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In this case, the equivalent capacitance value changes 
to: 
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Another non-ideality is introduced by the parasitic im-
pedances at VDGA terminals (Fig.4).  Parasitic resistanc-
es Rp, Rn, Rz, Rx and the parasitic capacitances Cp, Cn, Cz, Cx 
are connected between the high-impedance terminals 
(p, n, z and x) and ground.  Series parasitic resistance Rw 
is associated with the w-terminal. If these parasitic im-
pedances are taken into consideration, the non-ideal 
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Figure 2: CMOS implementation of the VDGA circuit obtained from the one in [22].  
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performance of the proposed circuit in Fig.3 can then 
be evaluated as follows.

If only the p-terminal parasitic impedances are consid-
ered, the equivalent capacitance is obtained as: 
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Similarly, if only the z- and x-terminal parasitic imped-
ances are taken into account, the equivalent capaci-
tance can be computed as: 
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where Rzx = Rz//Rx and Czx = Cz + Cx.
If only the effect of Rw is considered, the equivalent ca-
pacitance is :
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By considering equation (10)-(12), it can be seen that 
the various parasitics exhibited at different terminals 
of the VDGA will affect the high-frequency behavior of 
the proposed circuit.  However, from equation (10), the 
influence of the p-terminal parasitic impedances on 
the simulated capacitance can be reduced sufficiently 
under the assumption that Rp >> 1, and by choosing 
the external capacitor such that C >> Cp.  We also ob-
serve from equation (11) and (12) that the presence of 
parasitic impedances at terminals z, x and w introduces 
two extra poles, which reduces the useful bandwidth of 

the proposed circuit. Therefore, the circuit behaves as a 
capacitor for frequencies:
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5 Simulation results and application

The behavior of the proposed circuit in Fig.3 has been 
simulated with PSPICE using the transistor model pa-
rameters of a 0.25-µm TSMC CMOS process. Transistor 
dimensions are given in Table 1 and symmetrical sup-
ply voltages are +V = -V = 1 V.

Table 1: Transistor aspect ratios of CMOS VDGA in Fig.2.

Transistor W (µm) L (µm)
M1k - M2k 22 0.25
M3k - M4k 24 0.25
M5k 5 0.25
M6k - M7k 4.5 0.25
M8k - M9k 5.8 0.25

The proposed capacitance multiplier circuit depicted 
by Fig.3 was simulated with the following component 
values: IBA = IBB = 100 µA (gmA = gmB = 1 mA/V), IBC = 4 
µA (gmC = 0.2 mA/V) and C = 50 pF, which results in Ceq 
= 0.3 nF.  The quiescent power consumption of the 
circuit was 1.09 mW. In Fig.5, the simulated transient 
waveforms for vin and iin with a frequency of 10 MHz are 
given, wherein the phase difference has been found to 
be 89°. Fig.6 also represents the simulated frequency 
responses for Zin, compared with that of an ideal ca-
pacitor response. It is observed from Fig.6 that the 
simulation results are in very close agreement with the 
theoretically predicted response far beyond 10 MHz.  In 
addition to illustrate a variation of the Ceq value versus  iin
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of Fig.3. Figure 6: Simulated frequency responses for Zin of Fig.3.
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the capacitance multiplication factor, the impedance 
magnitude responses with different values of gmA are 
depicted in Fig.7.  The results are plotted for the circuit 
parameters listed in Table 2.

Figure 7: Magnitude-frequency responses of Zin with 
tuning IBA.  

Table 2: Detailed circuit component settings for Fig.7, 
where C = 50 pF.  

gmA (mA/V) IBA (µA) gmB (mA/V) IBB (µA) gmC (mA/V) IBC (µA) Ceq (nF) K
8 0.3 1 100 0.2 4 0.13 2.6
100 1.0 1 100 0.2 4 0.30 6.0
580 2.5 1 100 0.2 4 0.67 13.5

An illustrative application of the proposed capaci-
tance multiplier circuit in Fig.3 is the realization of 
a second-order RC low-pass filter depicted by Fig.8. 
The cut-off frequency point is determined by: fc = 
1/2π(R1R2Ceq1Ceq2)1/2.  In this realization, the capacitors 
Ceq1 and Ceq2 are realized with the proposed capacitance 

multiplier circuit in Fig.3.  The simulations of the illus-
trative low-pass filter have been performed by keeping 
R1 = R2 = 1 kΩ, and varying the values of Ceq = Ceq1 = Ceq2.  
Fig.9 shows the simulated voltage-gain responses for 
Ceq = 0.13 nF, 0.30 nF and 0.67 nF, where detailed Ceq set-
tings are the same as those given in Table 2. The results 
indicate that the value of fc is: 1.37 MHz, 0.53 MHz and 
0.23 MHz, respectively for different sets of Ceq values.  

6 Conclusions

In this work, a simple realization of an adjustable 
grounded capacitance multiplier is introduced.  The 
configuration uses only one VDGA as an active element 
and one floating capacitor as a passive element. The ca-
pacitance multiplication factor is electronically tunable 
by the ratio of the VDGA’s transconductance gains.  The 
effects of the VDGA non-idealities including voltage 
and current transfer errors and parasitic elements on 
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Figure 9: Simulated frequency responses of the filter     
in Fig.8 with tuning Ceq. 
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the realized capacitor are investigated.  The feasibility 
of the proposed capacitance multiplier is demonstrat-
ed on a second-order RC low-pass filter.  Simulation re-
sults employing TSMC 0.25-µm CMOS process param-
eters are provided to verify the theoretical analysis.
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