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Abstract: Computer aided circuit design is becoming one of the mainstream methods for helping circuit designers. Multiple new 
methods have been developed in this field including Evolutionary Electronics. A lot of work has been done in this field but there is 
still a room for improvement since some of the solutions lack the flexibility (diversity of components, limited topology etc.) in circuit 
design or lack complex fitness functions that would enable the synthesis of more complex circuits. The research presented in this 
article aims to improve this by introducing Grammatical Evolution-based approach for circuit synthesis. Grammatical Evolution offers 
great flexibility since it is rule based – adding a new element is as simple as writing one additional line of initialization code. In addition, 
the use of a complex multi-criteria function allows us to create circuits that can be as complex as required thus further increasing the 
flexibility of the approach. To achieve this, we use a combination of Python and SPICE to create a series of netlists, evaluate them in the 
PyOpus environment, and select the best possible circuit for the task. We demonstrate the efficiency of our approach in three different 
case studies where we automatically generate oscillators and high/low-pass filters of second and third order.
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Sinteza analognih vezij s pomočjo slovnične 
evolucije
Izvleček: Računalniško podprto načrtovanje vezij postaja eno ključnih orodij načrtovalcev elektronskih vezij. Na tem področju se je v 
zadnjem času pojavilo mnogo novih pristopov, kot na primer evolucijska elektronika. Kljub temu, da se področje živahno razvija, pa so 
možne in tudi potrebne še mnoge izboljšave. Zlasti zato, ker marsikatera obstoječa tehnika ne nudi dovolj prilagodljivosti pri sintezi 
vezij (omejen nabor elementov, omejitve pri topologijah ipd.) ali pa ne nudi možnosti za razvoj bolj kompleksnih vezij. S pristopom, 
ki uporablja tako imenovano slovnično evolucijo (angl. grammatical evolution), želimo te pomanjkljivosti odpraviti. Slovnična 
evolucija je izjemno prilagodljiva tehnika, ki deluje po principu pravil (t.j. ukazov, s pomočjo katerih se izgradi posamezen element 
vezja). Zato dodajanje novega tipa elementa v sistemu, ki uporablja slovnično evolucijo, ni nič bolj zapleteno kot vnos dodatne 
vrstice v inicializacijsko kodo. Poleg tega smo pri našem pristopu uporabili večkriterijsko funkcijo, ki nam omogoča sintezo poljubno 
kompleksnega vezja. Celoten sistem smo razvili in preizkusili v programskih okoljih Python in SPICE, s pomočjo katerih smo ustvarili 
serijo datotek z opisi vezij (angl. netlist), jih ovrednotili v okolju PyOpus ter s pomočjo kriterijske funkcije izbrali vezje, ki je najboljše za 
zadano nalogo. Uporabnost naše metode smo prikazali na treh primerih, kjer smo avtomatsko sintetizirali oscilatorje ter visoko in nizko 
prepustna sita drugega in tretjega reda.

Ključne besede: Avtomatska sinteza, analogna vezja, slovnična evolucija, računalniško podprto načrtovanje, evolucijski algoritmi
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1 Introduction

Analog circuit design has gradually changed from man-
ual design (in the 1970s) to computer assisted design 
where a highly skilled engineer uses an assortment of 
computer tools to create a circuit with the specified 
characteristics. These tools range from simple sche-

matic design to accurate circuit simulators (Simulation 
Program with Integrated Circuit Emphasis – SPICE [1]) 
that can simulate circuit behaviors and thus show if a 
circuit is actually worth implementing. This of course 
greatly reduces both the material costs (since one must 
only implement the final, best circuit) and the time to 
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production since the simulations require only a frac-
tion of time compared to actually creating and measur-
ing each potential circuit. 

These simulations, however, still require a lot of ex-
pertise from the user since he/she must still be able to 
manually specify things like the desired topology and 
necessary elements [2, 3, 4]. The rise of easily accessi-
ble (and more powerful) computers led to the research 
and development of tools that are capable (to some 
degree) of creating the desired topology automatically 
given a list of possible elements (resistors, coils, gen-
erators etc.) [5, 6] and circuit characteristics. Such tools 
are of great interest since they streamline the design 
process, save a lot of time and also grant the possibility 
of circuit design to a user who might not be well-versed 
in physical circuit design. 

These tools then led to the development of Electronic 
Design Automation (EDA) [7] and Evolutionary Elec-
tronics [8], which allow automatic circuit synthesis and 
optimization. The idea behind this approach is to have 
the engineer simply specify the characteristics in an ap-
propriate format (a cost function) and have the system 
create the appropriate circuit without any further inter-
action. This was first made possible when Koza [9] cre-
ated topologies in 1992 with arbitrary connections us-
ing genetic programming (GP). Genetic programming 
allows a great diversity of developed topologies and 
offers great flexibility when selecting a cost function 
and the topology components. The approach quickly 
spread to other research groups [10, 11, 12], who tack-
led issues such as bloat (an excessive growth of circuits 
with surplus elements, such as two or more elements 
of the same type in series or parallel) and alternative 
topology representations [12, 13].

One of such topology representations is in the form of 
formal grammar to be used by Grammatical Evolution 
(GE), an evolutionary computation technique related 
to the idea of GP. GE offers great flexibility and sim-
plicity during the initialization of the problem. It was 
already successfully used for simple circuit generation 
by Castejon et al. [6] but lacked a more complex fitness 
function. In this paper, we propose a combination of 
the GE approach together with a complex fitness func-
tion, similar to the one proposed by Rojec et al. [5]. The 
use of such function allows fine-tuning of several pa-
rameters at the same time (slope, gain, cut-off frequen-
cy etc.) but was so far limited only to a matrix-based GP 
approach. We believe that the combination of GE and 
an appropriate cost function should result in a tool that 
would allow a simple and efficient generation of com-
plex circuits that meet several different criteria at once.

The structure of the paper is as follows. Section 2 cov-
ers the methods used for our circuit representation 
– SPICE syntax, fitness functions, GE production rules 
and population manipulation techniques. Section 3 
presents the results of three different case studies that 
we performed during the development process, and 
section 4 summarizes our findings and compares them 
to three other techniques.

2 Materials and methods

Our goal is to create a system that can synthesize a 
circuit given two input parameters: (i) a list of accept-
able components (resistors, capacitors etc.) and (ii) the 
desired circuit characteristic interpreted as a GE fitness 
function. 

The final system should not require any in-depth 
knowledge of circuit design beyond being capable of 
formulating the desired circuit response and finding 
the circuit models in the SPICE environment.

We rely on a combination of Python (in which we im-
plemented the GE algorithm), SPICE (for circuit evalua-
tion) and PyOpus [14] as the link between them. During 
initialization we:
- Specify the components that can be used in the 

circuit (resistor, capacitor, source…) using the 
SPICE format.

- Define the fitness (RMSE, multi-criteria, PyOpus 
measurements etc.). 

- Define the GE grammar production rules.
- Set the GE parameters:

- Number of generations – how many groups of 
programs to evaluate.

- Population size – how many individuals (sub-
circuits) are produced in each generation.

- Crossover rules – which nodes can be replaced
- Mutation probability
- Elite size – what percentage of best individu-

als make it into the next generation.

Once all the parameters are set, we run the experiment 
by performing the following steps:
1. Evolve a sub-circuit for each genome sequence in 

the current generation.
2. Create a netlist for the generated circuit.
3. Evaluate the sub-circuit using the selected fitness 

function.
4. Trim the population – keep the best 10%.
5. Create a new generation of circuits by combining 

the previous best 10% and generating the rest 
with mutation, crossover and selection (see 2.2.4).

6. Repeat this until we have created and evaluated 
the desired number of generations.
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2.1 Circuit representation

Since we use SPICE to simulate and evaluate our cir-
cuits, we use the SPICE notation (netlists) for our cir-
cuits to make the procedure as simple as possible. 
Our circuit consists of a “main” circuit that features the 
necessary evaluation elements (sources, loads, ground 
ports etc.) and the “evaluation” subcircuit, which was 
generated by our algorithm. The “main” circuit is shown 
in Figure 1.

Figure 1: Main circuit for evaluation of the generated 
subcircuits.

The two circuits are stored in separate netlist files and 
used as input parameters for our PyOpus simulation.

2.2 Grammatical evolution

Grammatical Evolution is one of the emerging meth-
ods from the field of Evolutionary computation [6, 15, 
16]. The approach is based on using a grammar that 
consists of production rules for each possible circuit 
element and its characteristics. The definition of the 
grammar structure is one of the most important steps 
when using the GE approach. Each circuit (i.e. filter, os-
cillator, amplifier circuit) requires a different grammar 
structure since it can contain different elements, ports, 
and so on. The grammar is usually defined using the 
Backus-Naur form (BNF). 

Once we select the grammar, we must also select the 
evolution hyper-parameters such as the population 
size, crossover type and mutation probability. These 
parameters impact the duration of the simulation (a 
larger population requires more time for evaluation) 
and the success rate of each run (larger population and 
more frequent mutations can cover more of the search-
space and possibly find a better solution).

All our case studies featured a population size of 300 in-
dividuals per generation, 250 generations per run and 
a fixed mutation rate of 5%. 

2.2.1 The Grammar and production rules
The grammar used for this article was designed to ac-
commodate future expansions and modifications, i.e. 
to be as flexible as possible when adding new com-

ponents. An interesting thing to note is that although 
we created these rules from scratch we ended up with 
rules that were quite similar to those used by Castejon 
et al. [6]. 

The grammar consists of rules formulated in BNF for-
mat. These rules either generate non-terminal nodes 
(components) or terminal node that represent compo-
nent characteristics such as component type (resistor, 
coil and capacitor), values (i.e. resistance, capacity) and 
ports. The names of elements are generated later (see 
2.3 for more details). The common rules used in all our 
case studies are listed in Table 1.

Table 1: Genetic grammar production rules.

Rule Possible values
<part> “<cap>” | “<res>” | “<coi>” | “ ”
<res> “rXX (<gPair>) <num>e<n>”
<cap> “cXX (<gPair>) <num>e-<n>”
<coi> “lXX (<gPair>) <num>e-<n>”
<gPair> “input 0” | “input 1” | “input 2” | “input 

3” | “input 4” |  “input output” | “1 2” | 
“1 3” | “1 4” | “1 0” | “1 output” | “2 3” | 
“2 4” | “2 0” | “2 output” | “3 4” | “3 0” | 
“3 output” | “4 0” | “4 output”

<num> “<n>” | “<n><n>”
<n> “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | 

“9” | “0”

The starting symbol (see Table 2) is then used to gener-
ate the number of elements present in the subcircuit. 
This can be done recursively where one generates 
nodes until a terminal node is reached or one achieves 
the maximum possible depth. Alternatively, we can use 
an iterative approach where we set a maximum num-
ber of components (as opposed to maximum depth 
in the recursive approach). Here we deviated from 
the grammar form used in [6] as we used a different 
approach to keeping the number of elements within 
a preset maximum number. Castejon uses a dynamic 
option where a codon can either add an additional el-
ement or not. In our approach, we set the maximum 
number of elements and let the codons select whether 
or not an element exists. This was done to limit the cir-
cuit bloat.

2.2.2 Individuals and chromosomes
Grammatical Evolution creates individuals using a se-
quence of chromosomes. Each chromosome sequence 
contains 300 randomly generated chromosomes (a 
random integer between 1 and 256). These chromo-
somes are then interpreted using the GE rules (see 2.2.3 
for an example).  The same sequence of chromosomes 
will always generate the same subcircuit as long as the 
production rules remain the same. This greatly simpli-
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fies storage and reproduction of our results since we do 
not need to store the actual netlists, files or objects but 
simply need to store simple sequences of 300 integers 
thus greatly reducing the required storage space.

2.2.3 Demo Sequence
An example of individual generation would therefore 
proceed as follows. The system first creates a chromo-
some sequence {229, 52, 125, 40, 60, 99, 100….} and 
uses a starting sequence as shown below.

“<part><part><part>”

The algorithm then focuses on replacing the first sym-
bol in the sequence. The symbol “<part>” has three 
possible values which is why the algorithm then uses 
modulo operation on the current genome (229%3) 
which gives the result 1 which is the second of the pos-
sible values. The “<part>” symbol is therefore replaced 
with the “<res>” symbol.

“<res><part><part>”

The resistor has only one possible value so the algo-
rithm proceeds with a modulo 1 operation (52%1) 
which returns 0 and thus selects the only possible re-
sistor type.

“rXX (<gPair>)<num>e<n><part><part>”

The next symbol in the sequence is then the “<gPair>” 
which has 20 possible values. Using modulo 20 on 
the next genome in the sequence (125%20) returns 5 
which means that the resistor is set to be connected 
between the input and output ports of the subcircuit.

“rXX (input output)<num>e<n><part><part>”

The next genome (40%2) sets the “<num>” part to a 
single digit of “<n>”.

“rXX (input output)<n>e<n><part><part>”

Then the next genome selects one of the ten possible 
values for the digit (60%10) and sets it to “1”. 

“rXX (input output) 1e<n><part><part>”

Lastly, the value of exponent is set to “0” using the next ge-
nome and selecting between the 10 possible values (99%10).

“rXX (input output)1e0<part><part>”

The first element is therefore a resistor with resistivity 
of one 1 Ohm and connected between the input and 
output port.

Having set all the parameters of the first “<part>” sym-
bol, the algorithm then returns to the start symbol and 
uses the next genome (100%3) to select the type of 
the next element, which would in this case again be a 
resistor. This continues until all the symbols have been 
replaced with their parameter values. 

2.2.4 Population manipulation
Once all the individuals in the current population are 
evaluated and sorted, the question of producing the 
next generation occurs. This is done using several ma-
nipulation techniques. Using experience and advice 
from other experiments [17, 5, 18] we take the best in-
dividuals from the current generation and move them 
into the next until we fill one tenth of it (so in our case 
of 300 individuals per generation we allow the best 30 
individuals to proceed into the next one). Since we al-
ready evaluated these individuals, we will not need to 
do so again.

Next, we check if any of the (non-elite) individuals will 
mutate (a 5% chance in our case). When mutating, the 
algorithm select one random node of the individual 
and remove any nodes connected to it. The chromo-
some corresponding to this node will then be random-
ly changed to a new value. Afterwards the GE rules will 
be used to re-create the mutated individual. A muta-
tion can therefore result in a completely new circuit 
or a minor change in the circuit such as changing the 
numeric value of the element or the ports to which it is 
connected. So for example, if we begin with the follow-
ing sequence:

“rXX (input output)1e10 cXX(1 2) 4e-3”

Mutation can either change one of the parameters of 
the elements (for example the capacitivity of the ca-
pacitor)

“rXX (input output)1e10 cXX(1 2) 10e-6”

 Or completely replace one the elements with a new 
one (for example replace the resistor with a new ca-
pacitor)

“cXX (1 output)2e-9 cXX(1 2) 4e-3”

Following the mutation sequence, the algorithm will 
perform a crossover function on all the remaining in-
dividuals. This is done by selecting two individuals and 
randomly selecting a node in the first one. We then 
check if we can find a node of the same type in the 
second individual. If we do, we switch them between 
the two individuals. If not, we leave the individuals as 
they are. The level of exchange can be set to high level 
elements only (exchange complete elements with all 
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attributes) or any level desired (exchange ports, nu-
meric values etc.). The resulting individuals replace the 
originals. An example of crossover can be shown using 
the following two sequences which represent two in-
dividuals:

“cXX (1 output) 2e-9 cXX (1 2) 4e-3”
“rXX (input output) 1e10 cXX (1 2) 10e-6”

Our algorithm would then decide to crossover on the 
“<cap>” node, meaning that it would try to find a node 
of this type in each individual. Let’s assume that it se-
lects the first capacitor in the first individual and the 
only capacitor in the second individual. The algorithm 
then swaps the two and stores them as the new indi-
viduals resulting in:

“cXX (1 2) 10e-6 cXX (1 2) 4e-3”
“rXX (input output) 1e10 cXX (1 output) 2e-9”

Lastly, after selection we check if the new generation 
contains enough diversity. Without doing this, we 
would quickly find that most of the individuals contain 
the same circuit with only minor differences (for exam-
ple, a resistor of 10 Ohms instead of 9 Ohms). While this 
could be useful when optimizing the final solution, it 
can quickly lead us into a dead-end of the search space 
(a local minimum of the fitness function). We therefore 
check the diversity of population every 5 generations 
and remove any duplicate individuals that we find. 
All such duplicates are then replaced with a “fresh” 
randomly generated circuits which will (hopefully) in-
crease the diversity and thus the chance of finding the 
best possible solution. The frequency of this can be as 
high or as low as we require but we found that when 
working with simple circuits, it is beneficial to do this as 
frequently as possible.

Once all these steps are done, the next generation is 
complete and ready for evaluation.

2.3 Netlists and PyOPUS

Once an individual is transformed into a string se-
quence using the production rules (for example “cXX (1 
output) 3e-8 cXX (1 2) 39e-5 cXX (input 2) 73e-2 cXX (3 
output) 2e-7 rXX (1 0) 8e3 rXX (2 0) 4e7 rXX (1 3) 07e8 
rXX (3 0) 96e2 rXX (input output) 06e9 cXX (2 0) 07e-
7”) we need to  transform this sequence into a suitable 
subcircuit for the PyOpus simulator. Only then are we 
able to evaluate it (calculate its cost function). To do 
this, we utilize a simple string parser that performs two 
important tasks:
- Create a unique name for each of the circuit ele-

ments (change the first cXX to c01, the second to 
c02 and so on)

- Flag any circuit containing illegal nodes as faulty 
and not appropriate for simulation (for example 
cXX (2 2) 07e-9 is a capacitor that is connected to 
a single loop). Faulty circuits can otherwise loop 
the simulator, resulting in lost processing time.

If the circuit is faulty, the individual is not evaluated and 
has its cost set to the maximum possible value. Other-
wise, the processed string is stored into a temporary file 
along with a header containing all the required SPICE 
subcircuit characteristics. This file is then used with the 
SPICE simulator during the evaluation procedure.

2.4 Fitness functions

The core of the GE approach is the fitness function used 
to evaluate individuals. This function can be as simple 
or as complex as desired but must provide a clear (nu-
merical) fitness value of each individual in the genera-
tion. The better the value (usually meaning the lowest 
possible value) the better the individual and the better 
the chance for this individual to be the best possible 
solution for the problem at hand.

In our first case study, we used the same approach as 
Castejon et al [6] – a curve fitting metric. However, in-
stead of using a custom weighted function, we used 
the “standard” form of curve comparison – RMSE. This 
approach has proven to be viable in the past [19] and 
meets the GE fitness function requirements – i.e. a 
smaller value is better. An example result when using 
RMSE as the fitness function is shown in Figure 2.

Figure 2: A comparison of performance between a volt-
age oscillator generated by our algorithm (dashed) and 
the original circuit (solid).

Once we moved to more complex circuits (filters of sec-
ond and third order), we quickly discovered that simple 
fitness functions do not work sufficiently and lead to a 
low success rate. An example of a third-order filter de-
sign using RMSE is shown in Figure 3.

The problem stems from the fact that such a fitness 
function simply compares the difference between two 
curves on a point-by-point basis and is unable to in-
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clude any additional design requirements as for example 
the desired level of dampening. Even using a weighted 
version of such a function (as in [6]) does not help.

We therefore designed a different (multi criteria) fitness 
function as suggested by Rojec et al. [5]. The proposed 
function allows focus on several characteristics at the 
same time and also allows assigning different priori-
ties to each of them. Once we switched to the new fit-
ness function, we were able to generate working filters 
which matched the desired characteristics quite nicely 
as seen in Figure 4.

Figure 4: A successfully generated low-pass filter of the 
second order.

An additional advantage of the new fitness function 
was also the fact that we no longer required a com-
parison curve. When using RMSE we had to manually 
create a comparison curve, which meant that we had 
to have a comparison circuit ready. Using this baseline 
circuit we performed the PyOpus analysis and stored 
the results for further comparison. This is of course a 
bit controversial since it means that we had to have at 
least one example of a working circuit in order to be 
able to find other possible solutions. This can of course 
become a problem when dealing with more complex 
circuits or even when dealing with a user who does not 
have necessary knowledge.

Using the new fitness function we simply had to specify 
the desired characteristics (see 3.2.2) and the GE algo-
rithm was able to run. As an additional bonus, we also 
sped up the evaluation procedure by performing our 
evaluations during the simulation itself. The speed 
increase was noticeable since we were now able to 
produce the final circuit in ten minutes or less (as com-
pared to one hour reported by Rojec et al.).

3 Case studies

3.1 Oscillator circuit

In the first case study, we wanted to test several GE rule 
sets and see if they can produce feasible and workable 
circuits. We focused on replicating the performance of 
an oscillator circuit. We used RMSE as the fitness func-
tion and compared the voltage curve of the original 
oscillator with the GE generated curve. Figure 5 shows 
an example result where the solid line represents the 
original circuit, while the dashed one represents the GE 
generated circuit.

Figure 5: An RMSE generated oscillator voltage re-
sponse.

In the evolution process, we used three different rule 
sets. The first set featured pre-set elements (one resis-
tor, capacitor and coil – see rule (i) in Table 2) with the 
GE algorithm focusing on finding the correct element 
values. The idea behind this set was proving that our 
proposed technique actually finds a possible solution 
even when faced with severe limitations (in the form of 
a fixed circuit). 

The second set allowed the algorithm to create as many 
components as possible (up to 20). We only limited the 
number of available ports and combinations by using 
the <gPair> element from Table 1. The start symbol 
(shown as (ii) in Table 2) therefore featured 20 <part> 
elements for which the GE algorithm chose whether or 
not they translated into an actual component.

The last rule set further relaxed the constraints and 
allowed any number of elements and any number of 

Figure 3: A failure when creating the third-order filter 
using an RMSE fitness function.
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ports. The start symbol for this case became recursive 
as shown in Table 2. This means that, each time the GE 
algorithm created the next component, there was a 
50% chance (since there are two possibilities in the <p> 
symbol) of creating an additional component and 50% 
chance of this being the last component in the circuit.

Table 2: Oscillator circuit grammar.

Rule Possible values
(i) <start> “r01 (input output) <num->e<n>

c01 (input output) <num>e<n>
l01 (input output) <num>e<n>”

(ii) <start> “<-part-><-part->…<part>”
(iii) <start> “<-p->”
(iii) <p> “<part><p>” | “<part>”

Each of the rule sets resulted in a circuit that matched 
the original curve almost perfectly as seen in Figure 5. 
A sample circuit generated with the last set of rules is 
shown in Figure 6. 

Figure 6: A GE generated oscillator circuit.

The results show that the GE algorithm is up to the 
task of creating the desired circuit. We can, however, 
see that there is a potential problem with bloat, since 
the third set of rules created a large number of com-
ponents in most cases (an oscillator normally requires 
only three components). This can be alleviated during 
post-processing by analyzing the netlist and replacing 
parallel/serial elements with their equivalents.

3.2 Second-order filters

The first case study showed that we can generate sim-
ple circuits using our GE based approach. We then 
moved to a more complex example – second-order 
low/high-pass filters. As before, the aim remained the 
same – to automatically generate a filter with the de-
sired characteristics. At the beginning, we retained the 
RMSE fitness function (and had to generate a compari-
son circuit for each example) but we quickly discovered 

that this fitness function did not seem to have a very 
high success rate – while we were always able to create 
a circuit with filter-like characteristics (i.e., with a cut-off 
frequency and dampening) we were unable to do so in 
a consistent manner. Upon reflection (see 2.2 for more 
detail) we switched to a multi-criteria fitness function 
as suggested by Rojec et al. [5].

At the beginning of the study, we focused on high-pass 
filters but later also generated low-pass versions to 
demonstrate the flexibility of our approach.

3.2.1 Using RMSE
We used a pre-set circuit to generate a comparison 
curve that was used to evaluate the GE generated 
circuits. We also used experience from the first case 
study to limited our rules to using up to 12 different 
circuit components to reduce bloat (limiting the upper 
number of components was also suggested in [5]). In 
addition, we removed the coil element from the com-
ponent list, since a filter circuit usually consists of only 
resistors and capacitors.

We noticed after several extensive runs that there ap-
peared to be some issues with the success rate of the 
algorithm. While it did find a possible solution in some 
of the runs, it quite often either completely failed or 
produced something that did not resemble a second-
order filter at all, exhibiting quite a high cost function 
value. After analyzing several of the results, we came to 
the conclusion that the issue lies in the nature of the 
RMSE fitness function as discussed in 2.4.

We therefore switched to a more complex fitness func-
tion that allowed us to emphasize important aspects 
of the filter transfer functions and hopefully produce 
better (and more consistent) results.

3.2.2 Multi-criteria fitness function
We based our approach on the fitness function pre-
sented by Rojec et al. [5]. For the second-order filter, we 
focused on gain, cut-off frequency, ripple, and damp-
ing. Gain measures an increase (i.e., amplification) in 
the voltage level before the dampening begins. Gain 
of an ideal filter is equal to zero, meaning that the input 
level is stable before any changes applied by the filter. 
We calculated gain using this equation: 

 0 g dB gain= −     (1)

The cut-off frequency indicated the frequency at which 
the damping begins. We set it to 20 kHz in our case and 
calculated the difference between this value and the 
frequency created by our algorithm using the follow-
ing equation: 

1 1
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700n

648n

740m
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10 10 log 20 log  off passf kHz f= −   (2)

Ripple indicates whether or not the input level before 
the cut-off frequency remains stable (i.e. the whole 
bandwidth is amplified at the same level). We calcu-
lated the ripple level using equation 2. 

 0.5 , 0.5 
0, 0.5 

ripple dB ripple dB
r

ripple dB
− >

=  ≤
  (3)

Last but not least the damping indicates whether or 
not the designed filter actually achieved the desired 
level of damping after the cut-off frequency (i.e., a drop 
of 40 dB for a second-order filter). This was verified us-
ing the following equation:  

 40  , 40 
0, 40 

dB damping damping dB
d

damping dB
− <

=  ≥
 (4)

A graphical representation of these four criteria is 
shown in Figure 7.

Figure 7: Multi-criteria fitness function components as 
shown in [5].

In the end, we combined the four characteristics into a 
single cost function: 

 1 2 3 off 4cost    w r w d w f w g= + + +   (5)

The four weights ( 1w  to 4w ) allow us to select which of 
the characteristics is more important to us. For exam-
ple, if we favor achieving the desired level of damping 
and don’t care so much about hitting the filter frequen-
cy precisely, we raise the value of 2w  and decrease the 
value of 3w . During our experiments, we emphasized 
gain and ripple since this produced the best results. We 
selected the weights experimentally by using values 
from 1 to 20 and then chose the set that produced the 
best results in several runs. The four weights were set 
to 15, 10, 5, and 4. 

The new fitness function also simplified our algorithm 
in two important ways: (i) We do not need a compari-

son circuit anymore (which means less requirements 
for prior knowledge) and (ii) The evaluations of the four 
characteristics could be done automatically during the 
PyOpus simulation, thus reducing the amount of post-
processing. This resulted in a noticeable speed increase 
during the test runs.

We soon discovered that the new fitness function finds 
workable circuits a lot more frequently (practically al-
ways) and works a lot more consistently during runs. 
Thus, we can conclude that it is crucial for a complex 
circuit to have a complex fitness function in order to be 
able to generate results consistently.

An example of a generated transfer function (compared 
to the idealized transfer function) is shown in Figure 8 
with the matching generated circuit in Figure 9. 

Figure 8: A second-order high-pass filter transfer func-
tion.

Figure 9: A second-order high-pass filter circuit gener-
ated by our GE algorithm.

We were also able to generate a low-pass filter with 
slight modifications to the cost function or, to be more 
precise, the PyOpus simulation parameters. Namely, 
we used the PyOpus measurement module to extract 
the cut-off frequency using the following expression:
m.ACbandwidth(abs(v(‘out’)),abs(scale()),filter=’hp’

To design a low-pass filter we simply switched the filter 
parameter to ‘lp’ and were able to proceed. The result-
ing transfer function and circuit are shown in Figures 
10 and 11. 
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Figure 10: A second-order low-pass filter transfer func-
tion.

Figure 11: A second-order low-pass filter circuit gener-
ated using our method.

Looking at the circuits, we can see that there is a certain 
level of redundancy (for example two parallel resistors 
R1 and R2 in Figure 11), but (in our view) still not some-
thing to worry about. As already mentioned, much of 
this can be removed using a post processing algorithm 
that analyzes and optimizes the final netlist. This is, how-
ever, not possible while the algorithm is running, since 
it would require an extensive reworking of the chromo-
some structure. Nevertheless, we will consider this as a 
part of possible future improvements of our algorithm.

3.3 Third-order filters

For the last case study, we decided to increase the cir-
cuit complexity by increasing the level of the filter from 
second to third order. The implementation of such 
a change was extremely easy, since it only took us to 
change the target value of the damping factor from 
40 dB to 60 dB in equation 3. The rest of the experiment 
used the same parameters (i.e., the grammar rules re-
mained unchanged, no additional elements were add-
ed, and the number of runs and generations remained 
the same).

We were again able to consistently generate filter cir-
cuits with the desired characteristics in most of the 

runs. An example transfer function that we obtained 
from one of the evolution runs can be seen in Figure 
12. This function belongs to the circuit shown in Figure 
13. Interestingly enough, we did not need to add ad-
ditional components into the algorithm during the ini-
tialization phase (meaning that we were able to create 
a third-order filter using up to 14 components).

Figure 12: A third-order high-pass notch filter transfer 
function.

Figure 13: A generated third-order high-pass filter cir-
cuit.

We are able to make the same observations about 
the obtained circuits as we were during the previous 
case study – there is a certain level of redundancy (and 
bloat) but, due to an upper limit on the number of 
components, this remains on a manageable level and 
can be further reduced during post-processing.

 

4 Comparison with other methods

Compared to the original genetic programming based 
approach proposed by Koza [10], our approach offers 
more flexibility since it is not limited by the types of em-
bryonic circuits introduced in the initialization phase. 
This means that we do not need to specify any starting 
topology or/and circuit and can leave the algorithm to 
find its own solution. This also reduces the amount of 
prior knowledge required to use our approach.
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The approach presented in this paper also builds on 
findings of Castejon et al. [6] and Rojec et al. [5]. The 
former research group also used a GE approach and 
created separate rule sets similar to the ones presented 
in our work. They did not, however, limit bloat in the 
circuit (they allowed any number of elements) nor did 
they tackle more complex circuit examples. The latter is 
the consequence of them using only a very rudimenta-
ry cost function which, as we have demonstrated in this 
article, severely reduces the algorithm’s success rate. In 
our approach, we used a multi-criteria cost function 
(similar to the one used in [5]) and were consequently 
able to produce more complex circuits as well. 

An additional improvement made by our approach 
is a considerable increase in computation speed with 
which we generate the circuits. While Castejon et al. 
do not explicitly state the amount of time required for 
their experiments, we can learn that the approach used 
by Rojec et al. takes anywhere from one to 12 hours. All 
of the case studies presented in this work took less than 
15 minutes per run to complete, while getting a com-
parable circuits. We could probably reduce this further 
by using multiple processors and hyper threading but 
since the process already took such a small amount of 
time, we left this for future work.

5 Conclusions

We successfully developed a GE based system for auto-
mated topology synthesis that works with a high-level 
rule set and a complex (or simple) fitness function. We 
were able to generate several circuits in a small amount 
of time with appropriate grammar modification. As a 
consequence we believe that this approach shows 
merit and can be of benefit to other engineers. It can 
also be developed further  to improve its performance 
even more.

An additional improvement that we plan to develop is 
automatic post-processing of the evolved circuits. At 
the moment, we are only able to make sure that the 
evolved netlist contains correct component names and 
does not contain any illegal connections. This could be 
further improved by automatically detecting and re-
moving any redundancies (e.g., replacing two or more 
serial or parallel elements of the same type with a sin-
gle one). 

Another option would be a repairing mechanism that 
would be used before the fitness function evaluation. 
Such a mechanism could detect faulty circuits, useless 
circuit branches and other defects even before evalu-
ation and either try to correct them or flag the circuit 
as faulty and eliminate the individual. This could sig-

nificantly improve the approach, but will require some 
time to develop since we would also have to modify 
the individuals’ chromosome sequence to reflect the 
repairs.

We believe there lies much more potential for the ap-
plication of the presented GE technique for an efficient 
evolution of useful and complex circuits than the sci-
ence has been able to unearth so far. We will therefore 
aim to further develop the approach by increasing the 
complexity of the generated circuits, expanding the 
rule sets to include additional elements (transistors, 
amplifiers, etc.) and experiment with different options 
offered by the PyOpus environment (i.e., alternative 
modes of evaluation of the fitness function, paralleliza-
tion, and others). Last but not least, we plan to work 
towards creating an open-source library to be available 
for other researchers and research groups in the com-
munity as a part of the PyOpus package.
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