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Abstract: In this study, successful real-time hardware implementation of discrete-time chaotic zigzag map as a random number 

generator (RNG) on field-programmable gate array (FPGA) environment is presented. For the hardware modelling of the application, 

ready-to-use modules defined on 32-bit floating-point numbers and hardware description language (VHDL) are used. In the study, 

the non-linear dynamic behaviour of the chaotic generator synthesized on the Altera Cyclone IV GX FPGA chip is examined in terms 

of critical cryptographic competences such as system reliability and statistical randomness quality. The random numbers with poor 

statistical quality in the system are obtained by passing 32-bit chaotic trajectory outputs through a simple comparison circuit. In 

order to improve the statistical sufficiency of these numbers, the H function post-processing technique is used. In addition, statistical 

verification and hardware performance analysis of the generator through NIST 800-22 tests and FPGA chip statistics are presented in 

the study. The obtained successful results show that the zigzag map can be used in different chaos-based engineering applications, 

including embedded cryptographic applications. In addition, the low area-energy requirement of PRNG in terms of modelling 

technique facilitates its practical applicability on resource-restricted applications and architectures.
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Strojna implementacija bitnega dinamičnega 
psevdo-random generatorja števil v FPGA na 
osnovi kaotične zigzag karte 
Izvleček: Članek predstavlja strojno implementacijo časovno disktretne kaotične zigzag karte kot generator naključnih števil v FPGA 

okolju. Za strojno modeliranje aplikacije je uporabljen VHDL skriptni jezik. V smislu kvalitete naključnosti in zanesljivost je raziskano 

nelinearno dinamično obnašanje kaotičnega generatorja na Altera Cyclone IV GX FPGA čipu. Naključna števila s slabo statistično 

kvaliteto so dobljena s posredovanjem 32-bitne kaotične trajektorije v enostavno primerjalno vezje. Za izboljšpanje njihove kvalitete je 

uporabljena tehnika post procesiranja s H funkcijo. Dodatno je statistična verifikacija preverjena z NIST 800-22 testi in statistiko FPGA 

čipa. Rezultati nakazujejo možnost uporabe zigzag kart v različnih kaotičnih aplikacijah vključno s kriptografijo. 
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1 Introduction

In addition to cryptography, randomness is a common 
statistical concept for many areas such as game theory, 
simulation, statistic, quantum mechanics, program-
ming and entertainment. This common concept, un-

like other fields, corresponds to randomly distributed 
bit-level random numbers acquired from a specific en-
tropy source in cryptography are not reproducible and 
predictable. In cryptography, random numbers can be 
obtained from two different design classes, namely 
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True Random Number Generators (TRNG) using physi-
cal noise sources and Pseudo Random Number Gen-
erators (PRNG) with deterministic structure. Although 
their output is unpredictable, TRNGs are susceptible 
to environmental changes and mostly offer hardware-
dependent, slow and costly solutions [1-3].

Despite fulfilling an important cryptographic require-
ment such as unpredictability in terms of system secu-
rity, statistical weakness is the most obvious deficiency 
of a physical TRNG. For PRNGs where random num-
bers with good statistical properties can be obtained 
at low cost, determinism and periodicity are the most 
important shortcomings of this design class. PRNGs 
are preferred due to their practical structure to obtain 
random numbers within cryptographic applications. 
However, due to the nature of determinism, the initial 
conditions and system parameters are decisive in the 
development of future states of PRNGs, unlike random-
ness. This case leading to predictability, limits the use 
of PRNGs for sensitive cryptographic applications. Fur-
thermore, knowing the initial conditions (parameters) 
that contain all the entropy of the deterministic system, 
can completely remove the cryptographic confidenti-
ality required for PRNGs [4-5].

Chaos theory is an important concept that has found 
application in many different disciplines such as biol-
ogy, philosophy, meteorology, physics and sociology 
as well as different branches of engineering [4]. Chaos 
can be roughly defined as an irregular and unpredict-
able random behavior pattern observed in non-linear 
deterministic systems that are exponentially sensitive 
to initial conditions. The deterministic characteristic 
of chaotic systems is the most prominent feature dis-
tinguishing them from noise-based non-deterministic 
systems preferred for sensitive cryptographic applica-
tions. Due to their deterministic properties, the future 
states of chaotic systems can be predicted theoreti-
cally if the initial states are known exactly. However, in 
these systems characterized by a strong exponential 
dependence on the initial conditions, a very small error 
in the initial conditions due to the positive Lyapunov 
exponential can cause large deviations, also known as 
the butterfly effect, in the system trajectories evolving 
in time. Therefore, this divergent character can provide 
sufficient level of cryptographic secrecy by making the 
long-term estimation of dynamic system outputs in 
chaos state impossible [6-7].

Chaotic systems are divided into discrete and con-
tinuous time chaotic systems according to their math-
ematical modeling. In continuous chaotic systems, 
the evolution of the system is given by ordinary dif-
ferential equations. It depends on the rate of change 
of the system's state variables. In discrete time, where 

the evolution of the system depends on the values of 
state variables, chaotic systems are expressed by sim-
ple non-linear equations [3, 8]. For both chaotic system 
models, exponential sensitivity to the initial conditions 
and the ability to produce long-term non-periodic os-
cillations are the basic characteristics of these systems 
coinciding with the pattern of random behavior. These 
basic characteristics of chaos, which are similar to the 
confusion and diffusion properties, also known as 
Shannon principles, are used for different purposes in 
cryptography such as video [9], audio [10], image [11] 
encryption schemes, stream cipher [12], s-box design 
[13], post-processing techniques [14] and secure ad-
ditional input [2]. Random number generation is an-
other important use of chaos theory in cryptography. 
Chaotic systems can often be used as entropy source 
in hardware-based PRNG and TRNG designs, especially 
because they eliminate the need for difficult and com-
plex processes, such as obtaining and processing noise 
signals based on physical randomness.

In practice, the prediction of the future state informa-
tion of the chaotic system is limited by the measure-
ment sensitivity of the initial state information. Where-
as, the lack of infinite measurement sensitivity from the 
circuit nodes depending on the presence of electrical 
noise makes it almost impossible to accurately deter-
mine the initial conditions of the chaotic system for 
hardware implementations. Therefore, hardware mod-
eled chaotic systems alone can provide the reliability 
(security) and unpredictability needed cryptographi-
cally, unlike a simple deterministic PRNG [8].

In the literature, there are different chaos-based PRNG 
and TRNG paradigms implemented with FPGA chips 
offering important facilities such as flexibility, ease of 
modelling, low power consumption, parallel process-
ing and speed. Some of these studies can be summa-
rized as follows: Özkaynak [7] proposed an easily ap-
plicable RNG model on FPGA chips, which could be an 
alternative to discrete time chaotic systems using the 
fractional order Chua system. Tuna et al. [15] modelled 
the autonomous Lü-Chen chaotic system on Xilinx Vir-
tex-6 FPGA chip using the Heun numerical method and 
presented a high-speed chaotic oscillator design that 
can be used for embedded cryptographic applications. 
In another study, Tuna [16] presented a real-time im-
plementation of a PRNG using an artificial neural net-
work (ANN) based 2D chaotic oscillator on Xilinx Virtex 
6 FPGA chip in four different scenarios. Koyuncu and 
Özcerit [17] modeled the continuous-time Sundara-
pandian – Pehlivan chaotic system using the Range-
Kutta (RK4) numerical analysis method as RNG on the 
same FPGA chip. De la Fraga et al. [18] presented the 
hardware modeling of a PRNG based on four different 
discrete time chaotic system scenarios in their study 
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used Xilinx FPGA Spartan 3E FPGA chip. Koyuncu et al. 
[19] proposed the use of a new chaos-RO based dual 
entropy core TRNG architecture using the Xilinx Virtex-6 
FPGA chip. A new three-dimensional continuous-time 
autonomous chaotic oscillator (P3DS) has been used 
as the deterministic component of TRNG. In another 
study, Meranza-Castillón et al. [20] provided the hard-
ware implementation of a chaotic enhanced Hénon 
map (EHM) based PRNG that can be used for image and 
video ecryption systems on the Altera DE2-115 FPGA 
chip. Garcia Bosque et al. [21] presented a logistic map 
based PRNG implementation on Xilinx Virtex 7 chip in 
which chaotic system parameters change dynamically 
to prevent the system to fall into short period orbits as 
well as increasing the statistical randomness quality. 
Kanzadi et al. [22] proposed a double entropy sourced 
PRNG architecture on the Xilinx Spartan 3 FPGA chip, 
combining the tent and logistic map outputs with the 
exclusive-OR (XOR) gate. In [23], another logistic map 
based study Tuncer proposed physical unclonable 
functions based on ring oscillator (RO-PUF) and logistic 
map to generate pseudorandom numbers. The gen-
erator was implemented in Altera Cyclone II FPGA chip 
with VHDL language. Çiçek et al. [24] proposed a TRNG 
architecture using a discrete time double entropy re-
source to overcome the intrinsic limited entropy prob-
lem of conventional single entropy core architectures 
by using hardware redundancy.

In this study, hardware implementation and perfor-
mance evaluation of an FPGA-based PRNG using cha-
otic zigzag map as entropy source is given. The statis-
tical and spectral properties of the chaotic time series 
obtained from the implemented system are analyzed 
cryptographically. The NIST 800-22 randomness test is 
used for statistical verification of random numbers ob-
tained from chaotic time series. The presented study 
is important in terms of demonstrating the applicabil-
ity of the modeled chaotic system for different chaos-
based cryptographic purposes such as secure com-
munication, video and image encryption and s-box 
design in addition to random number generation. Fur-
thermore, chaotic PRNG can be easily used in resource-
restricted architectures and cryptographic applications 
due to its low area-energy consumption.

The rest of the paper is organized as follows: In Chap-
ter 2, theoretical details of the chaotic system are giv-
en. Details of the digital implementation of proposed 
PRNG on FPGA environment are presented in Chapter 
3. In Chapters 4 the hardware performance and statis-
tical success of chaos-based RNG have been analyzed 
cryptographically, respectively. The study is concluded 
by interpreting the results obtained in Chapter 5.
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2 Chaotic zigzag map

The discrete-time one-dimensional chaotic zigzag 
map whose mathematical definition is given in Eq. 1, 
is proposed by Nejati and Beirami in [5]. In Eq. 1, m is 
the state variable of the chaotic system and changes in 
the (- 3,3) closed interval. The zigzag map can display 
stable or chaotic behavior for different m values in the 
defined interval. The bifurcation diagram given in Fig. 
1 can be used to identify the chaotic behavior of the 
system for these changes. In Fig. 1, for |m| < 1 values 
its behavior is stable, while for intervals m ∈ (2,1), (1,2), 
[3,2) and (2,3] its behavior is chaotic. Especially for m 
∈ [3,2) and (2,3] intervals, the xn output values of the 
system in chaos state occur with a large irregularity in 
the [-1,1] interval. For the same intervals, the xn output 
values of the chaotic system tend to infinity for large n 
values representing the iteration step. For |m| = 2, the 
map converges to 0 [5, 18].

 

  (1)

In Eq. 1, the xn output values oscillating in the [-1,1] in-
terval for the zigzag map are 32-bit floating-point (real 
number) format. Eq. 2 is used to obtain one-bit random 
numbers from these 32-bit numbers in each iteration. 
In Eq. 2, the xn output values normalized to the [0,1] in-
terval, are compared with the threshold value and ran-
dom bit sequences are attained.  
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3 Implementation details of FPGA-
based real-time chaotic zigzag map

The chaotic system in accordance with the 32-bit IEEE 
754 floating-point number standard is designed to be 
operated on FPGA chips. The Quartus Prime Lite Edi-
tion 17.1 design software and the Altera Cyclone IV EP-
C4GX150 FPGA chip are used together for synthesis and 
placement during the hardware implementation phase. 
In the chaotic system, Intel FPGA Intellectual Property 
(IP) cores library with ready-to-use circuit elements de-
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fined on floating-point numbers is used for multiplica-
tion, division, addition, subtraction and comparison 
operations. In addition to this, all other definitions and 
circuit elements needed in the system are designed by 
VHDL dataflow and behavioral coding technique. 

The top-level block representation of the PRNG created 
by schematic and dataflow design techniques is shown 
in Fig. 2. The operating logic of the system given in Fig. 2 

can be briefly described as follows: In Fig. 2, 32-bit x0 and 
xn values represent the seed and output values of the 
chaotic system, respectively. When the chaotic system 
starts to work, the seed value x0 is applied as input to the 
system and after a certain calculation time, the output 
value x1 is obtained. This case is the initial position for the 
chaotic system and the output of the system is constant 
at value x1, in this position. In order to obtain random 
numbers from the chaotic system, starting from x1 value, 
the generated all xn values should be applied as input to 
the system, respectively. This case is called the feedback 
position for the chaotic system. 

Figure 2: Top-level schematic diagram of zigzag map 
based PRNG

The chaotic system generates random numbers dy-
namically, when in the feedback position, different 

Figure 1: Bifurcation diagram for zigzag map

Figure 3: Hardware modeling of zigzag map in Quartus environment. In figure (A) is the common 2/|m| constant for 
Equation 1. (B) is the 0 (zero) constant used to ensure synchronization in the modeling phase. (C) and (D) are dataflow 
designed multi-mode control and post-processing circuit elements, respectively
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from the initial position. A triggering signal (sel) ob-
tained from the physical ambiance is used as the selec-
tion pin of the mux at the input of the chaotic system 
to enable the transition between these positions. In 
order to obtain bit-level random oscillations (numbers) 
at the output of the PRNG, the 32-bit chaotic xn random 
numbers are passed through the digitization and post-
processing blocks, respectively. Quartus modeling of 
PRNG whose schematic structure is given in Fig. 2 as 
in Fig. 3. Real-time simulation of 32-bit hexadecimal 
random outputs representing the chaotic trajectory for 
the modeled zigzag map is as in Fig. 4.

For the mathematical operations, two addition (fp_
add), one subtraction (fp_substract), one multiplica-
tion (fp_multiplication), and one absolute value (fp_
abs), ready-to-use IP core modules which are able to 
do calculations with floating-point numbers are used 
in Fig. 3. In addition to these ready-to-use circuit mod-
ules, two dataflow designed block circuit elements 
(multimod_control_block & post_processing_block) 
are used in Fig. 3 (C) and (D).

In the initial position, the input values of the chaotic 
system x0 and m are 0.4898 and 2.5, respectively. The 
parameter  is the common factor of the three different 
equalities in Eq. 1. For this reason, instead of calculating 
the common (2/|m|) expression for the first and third 
equalities in Eq. 1 in each iteration, the mathematical 
equivalent of this expression is defined as constant 
(constant_1) as in Figure 3 (A). Therefore, the hardware 
equivalent of the equalities in Eq. 1 is (-m(xn + con-
stant)), (m(xn + 0)) and (m(xn - constant)) respectively in 
Fig. 3. In the system, it is important that the calculation 
time is the same for all three equalities in terms of syn-
chronization. For this purpose, for the second equality 
consisting of only multiplication, the addition with 0 
(zero) constant is made as in Fig. 3 (B). Thus, the calcula-
tion times of the parallel connected (xn + constant), (xn 
+ 0) and (xn - constant) expressions were equalized in 7 
clock pulses. The calculated results at each 7 clock puls-
es are simultaneously applied to c1, c2 and c3 inputs of 
the multimode control circuit in Fig. 3 (C), respectively.  

The outputs of the control circuit whose hardware 
modelling details are given in Fig. 5 are connected to 
the inputs of the multiplication circuit. The mathemati-
cal definition of the zigzag map consists of three differ-
ent equations. Which equality will be used in the sys-
tem is decided by looking at interval of the xn values. 
The main task of the multimode control circuit in Fig. 
5 is to determine which equality result should be used 
by checking the xn interval and whether the common   
factor is positive or negative. For this, the dataflow de-
signed circuit element (output_controller) in Figure 5 
(A) is used. The task of this component is to determine 
the interval of xn by checking the c1 input to which the 
(xn + 0) addition result is connected. The multimode 
control circuit in Fig. 5 has two 32-bit vectorial outputs, 
out0 and m_value. The out0 output is switched to one 
of the input values c1, c2 and c3 in accordance with the xn 
interval. When out0 output is switched to c1 input, m_
value output takes +m, in other cases (c0, c2) -m values.

Figure 5: Hardware modelling of the multimode con-
trol block

The calculation time required for multiplication in the 
system takes 5 clock pulses. With the addition, the cal-
culation time required to obtain a 32-bit xn random 
number in any iteration from the chaotic system is 
12 clock pulses in total. The 32-bit random numbers 
whose absolute value is taken after the multiplication 
are applied as an input to the comparison circuit (fp_
comparator) in Fig.3. The calculation time of the com-
parison circuit is 1 clock pulse and performs bit-level 
transformations according to Eq. 2. However, the sta-

Figure 4: Real time simulation results of the zigzag map for (a) initial and (b) feedback positions
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tistical randomness quality of the random numbers ob-
tained for the threshold value, selected as 0.5 in Eq. 2, 
is cryptographically insufficient. Random numbers ob-
tained from the chaotic system are applied to the input 
of the post processing block in Fig. 3 (D) to remove this 
shortcoming. The hardware modeling details of this 
block circuit, in which H function [25] post-processing 
technique is used, are as in Fig. 6.

Figure 6: Hardware modelling of post-processing block

The post-processing technique in Fig. 6. consists of two 
combiner circuits (pp_combiner1 & pp_combiner_2), 
used to obtain the desired bit-level logic vectorial in-
puts and outputs, in (A) and (B) and the H function in 
(C). The H function post-processing technique based 
on Quasigroup transformation needs 16-bit vectorial 
input obtained from chaotic system trajectory to pro-
duce 8-bit vectorial random output in each iteration. 
The task of the first combiner circuit (pp_combiner_1) 
in Fig. 6 (A) is to combine one-bit random numbers 
generated in every 13 clock pulses and to obtain 16-
bit logic vector inputs needed for the post-processing 
technique. Then, the random numbers passed through 
the XOR based H function block in Fig. 6 (C) are finally 
applied as an input to the other combiner circuit (pp_
combiner_2) in Fig. 6 (B). The 8-bit combined outputs of 
this circuit are also the hexadecimal outputs of PRNG.

The frequency of the clock signal applied to the input 
of the chaotic system is 200 MHz. The time to gener-
ate a 1-bit random sign / number for PRNG is 13 clock 
pulses depending on the calculation time of the cha-
otic system. In other words, for a 200 MHz clock sign 
with a period of 5 ns, the chaotic system produces a 
one-bit random number every 65 (13x5) ns. Hence, the 
output bit rate of PRNG is 200/13 = 15.4 Mbit/s with-
out post-processing technique. However, the post-pro-
cessing technique reduces the output bit rate of the 
chaos-based generator by 1/2. For this reason, the final 
output bit rate of chaotic PRNG drops to 15.4/2 = 7.7 
Mbit/s after the post-processing technique is applied.

The time to obtain 16 bit-length random number se-
quences for the post-processing technique in the 

system is 208 (13x16) clock pulses. The 8-bit random 
numbers generated by PRNG every 208 clock pulses, 
and the 32-bit outputs of the zigzag map are recorded 
in two different memory architectures for testing pur-
poses, as in Fig. 7 (A) and (B). Column widths of these 
memory architectures consisting of 65.536 rows are 8 
and 32 bits, respectively. In both memory architectures, 
16-bit counters are used for addressing. The memory 
architecture in Fig. 7 (A) is used for statistical analysis, 
while the memory architecture in (B) is used to verify 
the existence of chaos in the system for time series de-
rived from the zigzag map. The frequencies of the clock 
signal applied to the input of the counter and memory 
architectures are 960 KHz (200/208) and 16.7 (200/12) 
MHz, respectively.

Figure 7: Memory architectures used for testing in the 
system 

4 Experimental validation

Experimental analysis of the study is carried out in three 
stages. In the first stage, the existence of chaos in the 
system for zigzag map and exponential sensitivity of 
PRNG to initial conditions are analysed. In the second 
stage, statistical analysis of bit-level numbers obtained 
from chaotic time series is performed. In the last stage, 
the hardware design criteria of the proposed PRNG are 
examined and its performance based on these criteria 
is compared with other studies in the literature.

4.1 Lyapunov exponent analysis

The most distinctive feature distinguishing chaotic sys-
tems from other nonlinear systems is the exponential 
sensitivity to initial conditions, also known as the But-
terfly Effect. The Lyapunov exponent is one of the fre-
quently used method for analysing chaos in nonlinear 
systems and demonstrating the sensitive dependence 
of the system on initial conditions. The λ can be defined 
as the quantitative measurement of the amount of di-
vergence and convergence in the phase space of two 
trajectories starting at very close points to each other. 
The existence of chaos in a nonlinear deterministic sys-

E. Erdem et al.; Informacije Midem, Vol. 50, No. 4(2020), 243 – 253
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tem can be determined by looking at the sign of the λ 
value calculated as in the Eq. 3 of at least one trajectory. 
For at least one Lyapunov exponent greater than zero, 
the behaviour of the analysed system is defined as cha-
otic [18, 26]. The Lyapunov spectrum of the time series 
of the zigzag map obtained from the memory compo-
nent in Fig. 7 (B) and the distributions of these series for 
the range [-1, 1] are as in Fig. 8 and 9 respectively. 
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Figure 8: Lyapunov spectrum of the zigzag map

Figure 9: Distribution of time series obtained from cha-
otic system

The positive Lyapunov exponent in Fig. 8 confirms that 
the zigzag map for x0 and m input values is in chaos 
and the system display a random-like behaviour. This 
case also shows that the chaotic system exhibits non-
periodic behaviour and that orbital outputs are unpre-
dictable in long-term. This also shows that the orbital 
outputs of the chaotic system exhibiting non-periodic 
behaviour are unpredictable in the long-term and in 

this case, cryptographically reliable random numbers 
can be obtained from PRNG.

4.2 Statistical randomness analysis

In the presented study, NIST SP 800-22 statistical ran-
domness test suite [27] is used to verify the statistical 
sufficiency of PRNG. The test technique consists of 15 
separate subtest criteria and calculates the α and p-
value parameters for each test criterion. The p-value pa-
rameter, which is the probability random numbers are 
generated from an ideal RNG, varies in the range [0-1]. 
If p-value equals 1 for a test criterion, the sequence of 
numbers for the relevant test criterion is considered to 
be perfectly random. Otherwise, there is no random-
ness for the relevant test criterion. The α parameter, 
corresponding to the typical significance level, is in the 
[0.001– 0.01]. range. For α = 0.01, TRNG is considered to 
correctly produce 99 out of every 100 random number 
sequences. For the numbers testing, the p-value pa-
rameter for each test criterion must be greater than the 
α parameter [3, 28]. The sample length of each random 
number sequence tested is equivalent to the memory 
capacity in Fig. 7 (A). In other words, a random number 
sequence obtained from the PRNG for testing purposes 
at once time, consists of 524.288 (65.536x8) bits. The 
measured NIST 800-22 test results for PRNG are given 
in Table 1.

Table 1: NIST 800-22 test results

Test Name p-value Result
Frequency test 0.703 Success
Frequency test within a block 0.728 Success
Run test 0.594 Success
Test for the longest run of ones in 
a block

0.512 Success

Binary matrix rank 0.679 Success
Discrete Fourier  transform 0.912 Success
Non-Overlapping template 
matching

0.500 Success

The overlapping template 
matching test

0.490 Success

Maurer’ s universal statistical test 0.338 Success
Linear complexity test 0.697

0.415
Success

Serial test 0.793 Success
Approximate entropy test 0.654 Success
Cumulative sums 0.871 Success

In order for the outputs of any PRNG or TRNG to be used 
directly in cryptography, the randomness quality of the 
generator must be verified by statistical testing tools. 
In Table 1, the p-value > α condition has been fulfilled 
in all of the test criteria for the post-processed random 
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numbers. In this case, where the test criteria are consid-
ered successful, it can be said that the proposed zigzag 
map-based generator fulfils cryptographic require-
ments in terms of statistical randomness. The obtained 
results are important in terms of showing that the zig-
zag map can be used for different cryptographic pur-
poses, especially random number generation methods.

4.3 Hardware performance analysis

The area-energy requirement of any cryptographic 
RNG is important in terms of evaluating the applicabil-
ity of the generator on today's cryptographic applica-
tions and devices, where area-energy consumption 
is a major problem [3, 14]. Despite having statistically 
impressive results, solutions with high structural com-
plexity applied for security requirement can often make 
an RNG dysfunctional. Therefore, hardware cost analy-
sis of any RNG is important in respect to evaluating the 
practical usefulness of the generator. For this reason, 
it is important for an RNG to fulfil the security-related 
statistical requirements with minimum hardware cost 
in terms of the efficiency of the cryptographic applica-
tions they are used.

Although based on simple mathematical definitions, the 
fact that chaotic orbital outputs consist of three different 
equalities increases the complexity of the zigzag map in 
terms of hardware implementation. However, besides 
the ready IP modules, the dataflow designed circuit el-
ements in Fig. 3 (C) and (D) reduce this complexity as 
much as possible in terms of hardware. Especially since 
the (m . xn) factor is common in all three equalities, only 
one multiplication circuit is used with the help of the 
control circuit in Fig. 3 (C) instead of three different mul-
tiplication circuits. In addition, in Eq.1, 2/|m| expression is 
common for the first and third equalities. For any initial 
value of the system parameter m, the value of this ex-
pression will not change during the running time of the 
PRNG. Therefore, instead of using extra division and ab-
solute value circuits to calculate the value of this expres-
sion in the implementation phase, the mathematical 
equivalent of this expression is defined as constant cir-
cuit element as in Fig. 3 (A). This also simplifies the imple-
mentation of the chaotic generator as well as reducing 
the area-energy demand. The area-energy consumption 
parameters of the proposed zigzag map-based genera-
tor after the place-routing process is performed on FPGA 
chip are shown in Table 2.

Table 3: Comparison of the main characteristics of different chaos-based RNG proposals in the literature

Ref. Chaotic System Hardware 
Characteristic Test Tool Frequency 

(MHz)
Post-
Processing

Throughput 
(Mbps)

[8] Logistic, Bernoulli and Tent Map CMOS (0.25 
μm) NIST 800-22 - - -

[20] Enhanced Henon Map FPGA NIST 800-22 50 3.9 
[21] Logistic map FPGA NIST 800-22 - - 1.0
[24] Bernoulli Map FPGA NIST 800-22 50 - 1.5

[29] Chua circuit CMOS (0.18 
μm) FIPS 140-1 - 6-bit LFSR 2.02

[30] Coupled chaotic oscillator CMOS (0.35 
μm)

FIPS 140-1 
NIST 800-22 1.24 Von 

Neumann 2.0

[31] 3D chaotic system FPGA FIPS 140-1
NIST 800-22 373 XOR 4.59

[32] Tent Map CMOS (0.18 
μm) NIST 800-22 250 (KHz) 8-bit LFSR 0.25

[33] Sprott 94 G chaotic system FPGA NIST 800-22 339 - -
[34] Logistic and Henon map FPGA - 190 - 1.0
[35] Piecewise-Affi  ne Markov maps FPGA FIPS 140-1 24 XOR 60 (Kpbs)
[36] Lorenz and Lü chaotic systems FPGA NIST 800-22 78 - -

[37] Memristive Canonical Chua oscillator 
and logistic map FPGA NIST 800-22 59 XOR 0,1.25

[38] Time-delay chaotic system FPGA NIST 800-2
FIPS 140-2 120 - 4.0

[39] Sinusoidal iterator FPGA NIST 800-22 200 - 4.77
This 
study  Zigzag map FPGA NIST 800-22 200 H function 7.7
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Table 2: The FPGA chip statistics of the Zigzag map RNG

Parameters
(Altera Cyclone IV GX 
EP4CGX150DF31C8)

Total 
FPGA Unit

% Used for 
Zigzag Map 

PRNG
Total Logic Elements 149.760 2.160 (1 % )
Total combinational 
functions

149.760 2.093 (<1 % )

Total dedicated registers 149.760 1.100 (1 % )
Total memory bits 6.635.520 93 (< 1 % )
Embedded Multipliers 
9-bit 720 7 (1 %)

Total pins 508 10 (2 % )
Total PLLs 8 1 (13 %)
Power Dissipation (mW)
Dynamic - 10.84
Static - 105.17
IO - 11.01
Total - 127.02

The results given in Table 2 show that besides its good 
statistical properties, PRNG can be used easily in resource-
restricted embedded cryptographic applications. PRNG 
architecture, based on general principles in terms of mod-
elling technique, is a device independent generator mod-
el with low area-energy consumption, so it can be easily 
applied on resource restricted architectures. In addition, 
the generator's being based on digital design techniques 
and easy re-configurability feature are other important 
advantages in terms of hardware implementation.

The output bit rate performance of the proposed zig-
zag map based PRNG has been compared with other 
hardware based chaotic RNGs in the literature. Com-
parison results are as in Table 3. When the results in 
Table 3 are examined, it can be seen that PRNG offers 
a higher output bit rate compared to other studies, al-
though the output bitrate decreases by 1/2 due to the 
post processing technique.

5 Conclusion

In this study, the hardware implementation of a new 
PRNG using the chaotic Zigzag map as entropy source 
on FPGA environment is presented. The bit-level ran-
dom outputs of PRNG are obtained from the trajec-
tory produced by the chaotic zigzag map for the initial 
value of x0. The outputs representing the 32-bit chaotic 
orbit in the system are transformed into bit-level ran-
dom numbers / signs with the help of a simple com-
parison circuit and subjected to post-processing tech-
nique. While the Zigzag map is in chaos state, PRNG's 
post-processed outputs successfully pass the NIST 
800-22 tests. Statistical randomness results confirm 

that the chaotic system modelled can be used for dif-
ferent cryptographic purposes as well as random num-
ber generation methods. In addition, the low hardware 
resource requirement makes PRNG easily applicable in 
resource-constrained hardware architectures and ap-
plications. In another aspect, the study is important in 
terms of showing the usability of the zigzag map in dif-
ferent chaos-based engineering applications and be-
ing a source for these studies.
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