Microfluidics: a review
Abstract
Keywords
Full Text:
PDFReferences
Lai, S., Wang, S., Luo, J., Lee, L. J., Yang, S. T., & Madou, M. J. (2004). Design of a compact disk-like microfluidic platform for enzyme-linked immuno-sorbent assay. Analytical chemistry, 76(7), 1832-1837, https://doi.org/10.1021/ac0348322 .
Dittrich, P. S., & Manz, A. (2006). Lab-on-a-chip: microfluidics in drug discovery. Nature reviews Drug discovery, 5(3), 210-218, https://doi.org/10.1038/nrd1985 .
Nguyen, N. T., Wereley, S. T., & Shaegh, S. A. M. (2019). Fundamentals and applications of microflu-idics. Artech house, https://doi.org/10.1108/info.2002.4.2.49.1 .
Lai, S., Wang, S., Luo, J., Lee, L. J., Yang, S. T., & Madou, M. J. (2004). Design of a compact disk-like microfluidic platform for enzyme-linked immuno-sorbent assay. Analytical chemistry, 76(7), 1832-1837, https://doi.org/10.1021/ac0348322 .
Streets, A. M., & Huang, Y. (2013). Chip in a lab: Microfluidics for next generation life science re-search. Biomicrofluidics, 7(1), 011302, https://doi.org/10.1063/1.4789751 .
Lei, K. F. (2014). Materials and fabrication techniques for nano-and microfluidic devices, https://doi.org/10.1039/9781849737609-00001 .
Wolf, M. P., Salieb-Beugelaar, G. B., & Hunziker, P. (2018). PDMS with designer functionalities—Properties, modifications strategies, and applica-tions. Progress in Polymer Science, 83, 97-134, https://doi.org/10.1016/j.progpolymsci.2018.06.001 .
Elwenspoek, M., & Jansen, H. V. (2004). Silicon micromachining (Vol. 7). Cambridge University Press, https://doi.org/10.1007/978-3-662-04321-9_3 .
Resnik, D., Aljančič, U., Vrtačnik, D., Cvar, M., & Amon, S. (1998). Mikroobdelava silici-ja. Vakuumist, 1(let 18), 4-11
Vrtačnik D et al. RIE of deep silicon microchannels for microfluidic applications. Proceedings, 44th In-ternational Conference MIDEM, September 2008
Tilli, M., Paulasto-Kröckel, M., Petzold, M., Theuss, H., Motooka, T., & Lindroos, V. (Eds.). (2020). Handbook of silicon based MEMS materials and technologies. Elsevier, https://doi.org/10.1016/b978-0-12-817786-0.00062-1 .
Owen, K. J., VanDerElzen, B., Peterson, R. L., & Najafi, K. (2012, January). High aspect ratio deep silicon etching. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 251-254). IEEE, https://doi.org/10.1109/memsys.2012.6170138 .
Giang, U. B. T., Lee, D., King, M. R., & DeLouise, L. A. (2007). Microfabrication of cavities in polydi-methylsiloxane using DRIE silicon molds. Lab on a Chip, 7(12), 1660-1662, https://doi.org/10.1039/b714742b .
Chen, K. S., Ayón, A. A., Zhang, X., & Spearing, S. M. (2002). Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE). Journal of Microelectromechanical Systems, 11(3), 264-275, https://doi.org/10.1109/jmems.2002.1007405 .
Vrtačnik D et al. Optimization of DRIE silicon microstructures with Bosch process. Proceedings, 47th International Conference MIDEM, septem-ber 2011.
Li, X., Abe, T., Liu, Y., & Esashi, M. (2002). Fabrica-tion of high-density electrical feed-throughs by deep-reactive-ion etching of Pyrex glass. Journal of Microelectromechanical Systems, 11(6), 625-630, https://doi.org/10.1109/jmems.2002.805211 .
Stjernström, M., & Roeraade, J. (1998). Method for fabrication of microfluidic systems in glass. Journal of Micromechanics and Microengine-ering, 8(1), 33, https://doi.org/10.1088/0960-1317/8/1/006 .
Iliescu, C. (2006). Microfluidics in glass: technolo-gies and applications. Informacije MIDEM, 36(4), 204, http://www.dlib.si/details/URN:NBN:SI:doc-U408KBPW.
Xia, Y., & Whitesides, G. M. (1998). Soft lithograp-hy. Annual review of materials science, 28(1), 153-184, https://doi.org/10.1146/annurev.matsci.28.1.153 .
Goral, V. N., Hsieh, Y. C., Petzold, O. N., Faris, R. A., & Yuen, P. K. (2010). Hot embossing of plastic microfluidic devices using poly (dimethylsiloxane) molds. Journal of Micromechanics and Microengine-ering, 21(1), 017002, https://doi.org/10.1088/0960-1317/21/1/017002 .
Matteucci, M., Christiansen, T. L., Tanzi, S., Østergaard, P. F., Larsen, S. T., & Taboryski, R. (2013). Fabrication and characterization of injec-tion molded multi level nano and microfluidic systems. Microelectronic engineering, 111, 294-298, https://doi.org/10.1016/j.mee.2013.01.060 .
Sethu, P., & Mastrangelo, C. H. (2004). Cast epoxy-based microfluidic systems and their appli-cation in biotechnology. Sensors and Actuators B: Chemical, 98(2-3), 337-346,
https://doi.org/10.1016/j.snb.2003.09.036 .
Shiu, P. P., Knopf, G. K., Ostojic, M., & Nikumb, S. (2008). Rapid fabrication of tooling for microflui-dic devices via laser micromachining and hot embossing. Journal of Micromechanics and Micro-engineering, 18(2), 025012, https://doi.org/10.1088/0960-1317/18/2/025012 .
Ali, M. Y. (2009). Fabrication of microfluidic chan-nel using micro end milling and micro electrical discharge milling. International Journal of Mechani-cal and Materials Engineering, 4(1), 93-97, https://doi.org/10.1115/1.802946.paper44 .
Thompson, K., Gianchandani, Y. B., Booske, J., & Cooper, R. F. (2002). Direct silicon-silicon bonding by electromagnetic induction heating. Journal of Microelectromechanical Systems, 11(4), 285-292, https://doi.org/10.1109/jmems.2002.800929 .
Takagi, H., Maeda, R., Chung, T. R., & Suga, T. (1998). Low-temperature direct bonding of silicon and silicon dioxide by the surface activation met-hod. Sensors and Actuators A: Physical, 70(1-2), 164-170, https://doi.org/10.1016/s0924-4247(98)00128-9 .
Quenzer, H. J., & Benecke, W. (1992). Low-temperature silicon wafer bonding. Sensors and Actuators A: Physical, 32(1-3), 340-344, https://doi.org/10.1016/0924-4247(92)80009-r .
Resnik, D., Vrtačnik, D., Aljančič, U., & Amon, S. (2000). Study of low-temperature direct bonding of (111) and (100) silicon wafers under various am-bient and surface conditions. Sensors and Actua-tors A: Physical, 80(1), 68-76, https://doi.org/10.1016/s0924-4247(99)00299-x .
Resnik, D., Vrtacnik, D., Aljancic, U., & Amon, S. (2000). Direct bonding of (111) and (100) oriented silicon wafers. Informacije MIDEM, 30(1), 20-31, https://doi.org/10.1016/s0924-4247(99)00299-x .
Xiao, Z. X., Wu, G. Y., Li, Z. H., Zhang, G. B., Hao, Y. L., & Wang, Y. Y. (1999). Silicon–glass wafer bonding with silicon hydrophilic fusion bonding technology. Sensors and Actuators A: Physi-cal, 72(1), 46-48, https://doi.org/10.1016/s0924-4247(98)00197-6 .
Resnik, D., Aljančič, U., Vrtačnik, D., Možek, M., Pečar, B., & Amon, S. (2012, March). Microfluidic platforms realized by micromachining and anodic bonding of Si and glass substrates. In 2012 8th In-ternational Caribbean Conference on Devices, Circuits and Systems (ICCDCS) (pp. 1-4). IEEE, https://doi.org/10.1109/iccdcs.2012.6188939 .
Resnik, D., Možek, M., Dolžan, T., Amon, S., & Vrtačnik, D. (2012). Spajanje podlag silicij-steklo z anodnim bondiranjem. Vakuumist, 3(32), 4-11.
Tsao, C. W. (2016). Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized produc-tion. Micromachines, 7(12), 225, https://doi.org/10.3390/mi7120225 .
Suzuki, Y., Yamada, M., & Seki, M. (2010). Sol–gel based fabrication of hybrid microfluidic devices composed of PDMS and thermoplastic substrates. Sensors and Actuators B: Chemical, 148(1), 323- 329, https://doi.org/10.1016/j.snb.2010.04.018 .
Tsao, C. W., & DeVoe, D. L. (2009). Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics, 6(1), 1-16, https://doi.org/10.1007/s10404-008-0361-x .
Lee, K. S., & Ram, R. J. (2009). Plastic–PDMS bon-ding for high pressure hydrolytically stable active microfluidics. Lab on a Chip, 9(11), 1618-1624, https://doi.org/10.1039/b820924c .
Pečar, B., Možek, M., & Vrtačnik, D. (2017). Ther-moplastic-PDMS polymer covalent bonding for microfluidic applications. Informacije MIDEM, 47(3), 147-154.
Conde, J. P., Madaboosi, N., Soares, R. R., Fernan-des, J. T. S., Novo, P., Moulas, G., & Chu, V. (2016). Lab-on-chip systems for integrated bioa-nalyses. Essays in biochemistry, 60(1), 121-131, https://doi.org/10.1042/ebc20150013 .
Krutzsch, W. C., & Cooper, P. (1986). Introduction: classification and selection of pumps. Pump Handbook.
Van Lintel, H. T. G., Van de Pol, F. C. M., & Bouwstra, S. (1988). A piezoelectric micropump based on micromachining of silicon. Sensors and actuators, 15(2), 153-167, https://doi.org/10.1016/0250-6874(88)87005-7 .
Carrozza, M. C., Croce, N., Magnani, B., & Dario, P. (1995). A piezoelectric-driven stereolithography-fabricated micropump. Journal of Micromechanics and Microengineering, 5(2), 177, https://doi.org/10.1088/0960-1317/5/2/032 .
Koch, M., Harris, N., Evans, A. G., White, N. M., & Brunnschweiler, A. (1998). A novel micromachined pump based on thick-film piezoelectric actuati-on. Sensors and Actuators A: Physical, 70(1-2), 98-103, https://doi.org/10.1016/s0924-4247(98)00120-4 .
Pečar, B., Možek, M. & Vrtačnik, D. Piezoelektrična mikročrpalka z ventiloma, ki posnemata delovanje bioloških venskih zaklopk : patent SI 25227 (A), 2017-12-29. Ljubljana: Urad RS za intelektualno lastnino, 2017
Ardito, R., Bertarelli, E., Corigliano, A., & Gafforelli, G. (2013). On the application of piezolaminated composites to diaphragm micropumps. Composite Structures, 99, 231-240, https://doi.org/10.1016/j.compstruct.2012.11.041 .
Pečar, B. et al. (2017). Microcylinder pump employing 0.57 Pb (Sc1/2Nb1/2) O3–0.43 PbTiO3 piezoelectric actuator. Journal of Optoelectronics and Advanced Materials, 19(September-October 2017), 617-622.
Pečar, B. et al. Silicon piezoelectric vaveless mic-ropumps. V: JUNKAR, Mihael (ur.), et al. MIT & SLIM 2011 : proceedings of the 11th International Conference on Management of Innovative Techno-logies & 2nd International Conferen
Jin, Z. J., Gao, Z. X., Chen, M. R., & Qian, J. Y. (2018). Parametric study on Tesla valve with re-verse flow for hydrogen decompressi-on. International Journal of Hydrogen Ener-gy, 43(18), 8888-8896, https://doi.org/10.1016/j.ijhydene.2018.03.014 .
Huang, P. H., Nama, N., Mao, Z., Li, P., Rufo, J., Chen, Y., ... & Huang, T. J. (2014). A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab on a Chip, 14(22), 4319-4323, https://doi.org/10.1039/c4lc00806e .
Tanyeri, M., & Tay, S. (2018). Viable cell culture in PDMS-based microfluidic devices. In Methods in cell biology (Vol. 148, pp. 3-33). Academic Press, https://doi.org/10.1016/bs.mcb.2018.09.007 .
Wang, C., Kim, J. S., & Park, J. (2017, June). Micro check valve integrated magnetically actuated micropump for implantable drug delivery. In 2017 19th International Conference on Solid-State Sen-sors, Actuators and Microsystems (TRANSDUCERS) (pp. 1711-1713). IEEE, https://doi.org/10.1109/transducers.2017.7994396 .
Gadad, N., Shivayyanavar, N., Viannie, L. R., Jaya-chandra, S. Y., Banapurmath, N. R., Shettar, A. S., ... & Kaulgud, V. (2018). Fabrication and develop-ment of magnetically actuated PDMS micropump for drug delivery. MS&E, 376(1), 012128, https://doi.org/10.1088/1757-899x/376/1/012128 .
Kawun, P., Leahy, S., & Lai, Y. (2016). A thin PDMS nozzle/diffuser micropump for biomedical applica-tions. Sensors and Actuators A: Physical, 249, 149-154, https://doi.org/10.1016/j.sna.2016.08.032 .
Chien, H. L., & Lee, Y. C. (2017). A ball valve mi-cro-pump based on axially symmetrical nozzle fab-ricated by excimer laser micromachining technol-ogy. International Journal of Precision Engineering and Manufacturing, 18(10), 1315-1320, https://doi.org/10.1007/s12541-017-0156-7 .
Ye, Y., Chen, J., Ren, Y. J., & Feng, Z. H. (2018). Valve improvement for high flow rate piezoelec-tric pump with PDMS film valves. Sensors and Ac-tuators A: Physical, 283, 245-253, https://doi.org/10.1016/j.sna.2018.09.064 .
Mashayek, A., Caulfield, C. P., & Peltier, W. R. (2017). Role of overturns in optimal mixing in stra-tified mixing layers. Journal of Fluid Mecha-nics, 826, 522-552, https://doi.org/10.1017/jfm.2017.374 .
Rusli, M. Q. A., Chee, P. S., Arsat, R., Lau, K. X., & Leow, P. L. (2018). Electromagnetic actuation du-al-chamber bidirectional flow micropump. Sensors and Actuators A: Physical, 282, 17-27, https://doi.org/10.1016/j.sna.2018.08.047 .
Ala'aldeen, T., Demming, S., Dietzel, A., & Büttgenbach, S. (2016). Design, fabrication, and characterization of a continuous flow micropump system. Journal of Thermal Science and Engineer-ing Applications, 8(2), 021006, https://doi.org/10.1115/1.4031922 .
Gidde, R. R., & Pawar, P. M. (2017). On effect of viscoelastic characteristics of polymers on perfor-mance of micropump. Advances in Mechanical En-gineering, 9(2), 1687814017691211, https://doi.org/10.1177/1687814017691211 .
Smits, J. G. (1990). Piezoelectric micropump with three valves working peristaltically. Sensors and Actuators A: Physical, 21(1-3), 203-206, https://doi.org/10.1016/0924-4247(90)85039-7 .
Berg, J. M., Anderson, R., Anaya, M., Lahlouh, B., Holtz, M., & Dallas, T. (2003). A two-stage discrete peristaltic micropump. Sensors and Actuators A: Physical, 104(1), 6-10, https://doi.org/10.1016/s0924-4247(02)00434-x .
Pečar, B., Križaj, D., Vrtačnik, D., Resnik, D., Dol-žan, T., & Možek, M. (2014). Piezoelectric peristal-tic micropump with a single actuator. Journal of Micromechanics and Microengineering, 24(10), 105010, https://doi.org/10.1088/0960-1317/24/10/105010 .
Davies, M. J., Johnston, I. D., Tan,C. K. L., & Tracey, M. C. (2010). Whole blood pumping with a micro-throttle pump. Biomicrofluidics, 4(4), 044112, https://doi.org/10.1063/1.3528327 .
Pečar, B., Vrtačnik, D., Resnik, D., Možek, M., Aljančič, U., Dolžan, T., ... & Križaj, D. (2013). A strip-type microthrottle pump: Modeling, design and fabrication. Sensors, 13(3), 3092-3108, https://doi.org/10.3390/s130303092 .
Dolžan, T., Pečar, B., Možek, M., Resnik, D., & Vrtačnik, D. (2015). Self-priming bubble tolerant microcylinder pump. Sensors and Actuators A: Physical, 233, 548-556, https://doi.org/10.1016/j.sna.2015.07.015 .
Gravesen, P., Branebjerg, J., & Jensen, O. S. (1993). Microfluidics-a review. Journal of microme-chanics and microengineering, 3(4), 168, https://doi.org/10.3390/s130303092 .
Wang, J., Sullivan, M., & Hua, S. Z. (2007). Electro-lytic-bubble-based flow sensor for microfluidic systems. Journal of microelectromechanical sys-tems, 16(5), 1087-1094, https://doi.org/10.1016/j.sna.2015.05.020 .
Nezhad, A. S., Ghanbari, M., Agudelo, C. G., Packirisamy, M., Bhat, R. B., & Geitmann, A. (2012). PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sensors jour-nal, 13(2), 601-609, https://doi.org/10.1109/jsen.2012.2223667 .
Amnache, A., Omri, M., & Fréchette, L. G. (2018). A silicon rectangular micro-orifice for gas flow measurement at moderate Reynolds numbers: design, fabrication and flow analyses. Microfluidics and Nanofluidics, 22(6), 58, https://doi.org/10.1007/s10404-018-2077-x .
Richter, A., Hofmann, K. A., Plettner, A., & Sand-maier, H. (1991, June). The electrohydrodynamic micro flow meter. In TRANSDUCERS'91: 1991 In-ternational Conference on Solid-State Sensors and Actuators. Digest of Technical Papers (pp. 935-938). IEEE, https://doi.org/10.1109/sensor.1991.149042 .
Accoto, D., Damiani, F., Campisi, M., Castrataro, P., Campolo, D., Guglielmelli, E., & Dario, P. (2006, January). A micro flow-meter for closed-loop management of biological samples. In 2005 IEEE Engineering in Medicine and Biology 27th An-nual Conference (pp. 5062-5065). IEEE, https://doi.org/10.1109/iembs.2005.1615614
Nie, C., Frijns, A. J. H., Mandamparambil, R., Zev-enbergen, M. A. G., & den Toonder, J. M. J. (2015). An evaporation based digital microflow meter. Journal of Micromechanics and Microengi-neering, 25(11), 115008, https://doi.org/10.1088/0960-1317/25/11/115008 .
Van Oudheusden, B. W. (1992). Silicon thermal flow sensors. Sensors and Actuators A: Physi-cal, 30(1-2), 5-26, https://doi.org/10.1016/0924-4247(92)80192-6 .
Petropoulos, A., & Kaltsas, G. (2010). Study and evaluation of a PCB-MEMS liquid microflow sen-sor. Sensors, 10(10), 8981-9001, https://doi.org/10.3390/s101008981 .
Yaghmourali, Y. V., Ahmadi, N., & Abbaspour-Sani, E. (2017). A thermal-calorimetric gas flow meter with improved isolating featu-re. Microsystem Technologies, 23(6), 1927-1936, https://doi.org/10.1007/s00542-016-2915-2 .
Ke, W., Liu, M., Li, T., & Wang, Y. (2019). MEMS thermal gas flow sensor with self-test func-tion. Journal of Micromechanics and Microengine-ering, 29(12), 125009, https://doi.org/10.1088/1361-6439/ab4aef .
Kang, W., Choi, H. M., & Choi, Y. M. (2018). Deve-lopment of MEMS-based thermal mass flow sen-sors for high sensitivity and wide flow rate ran-ge. Journal of Mechanical Science and Techno-logy, 32(9), 4237-4243, https://doi.org/10.1007/s12206-018-0822-4 .
Kaltsas, G., Petropoulos, A., Tsougeni, K., Pago-nis, D. N., Speliotis, T., Gogolides, E., & Nassi-opoulou, A. G. (2007, December). A novel micro-fabrication technology on organic substrates—Application to a thermal flow sensor. In J. Phys. Conf. Ser (Vol. 92, No. 1, p. 12046), https://doi.org/10.1088/1742-6596/92/1/012046 .
Li, Y., Baek, K., Gulari, M., Lin, D., & Wise, K. D. (2005, October). A vacuum-isolated thermal mi-croflowmeter for in-vivo drug delivery. In SENSORS, 2005 IEEE (pp. 4-pp). IEEE, https://doi.org/10.1109/icsens.2005.1597787 .
Liu, P., Zhu, R., & Que, R. (2009). A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors, 9(12), 9533-9543, https://doi.org/10.3390/s91209533 .
Ahrens, R., & Schlote-Holubek, K. (2009). A micro flow sensor from a polymer for gases and liquids. Journal of Micromechanics and Microengi-neering, 19(7), 074006, https://doi.org/10.1088/0960-1317/19/7/074006 .
Li, C., Wu, P. M., Han, J., & Ahn, C. H. (2008). A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomedical microdevices, 10(5), 671-679, https://doi.org/10.1007/s10544-008-9178-3 .
Kuo, J. T., Chang, L. Y., Li, P. Y., Hoang, T., & Meng, E. (2011). A microfluidic platform with in-tegrated flow sensing for focal chemical stimula-tion of cells and tissue. Sensors and Actuators B: Chemical, 152(2), 267-276, https://doi.org/10.1016/j.snb.2010.12.019 .
Pečar B et al. Microflowmeter for microfluidics applications. Conference proceedings, 52nd Inter-national Conference MIDEM, September 28 - 30 2016, 122-126.
Miralles, V., Huerre, A., Malloggi, F., & Jullien, M. C. (2013). A review of heating and temperature control in microfluidic systems: techniques and applications. Diagnostics, 3(1), 33-67, https://doi.org/10.3390/diagnostics3010033 .
Matsui, T., Franzke, J., Manz, A., & Janasek, D. (2007). Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. Electrophoresis, 28(24), 4606-4611, https://doi.org/10.1002/elps.200700272 .
Kempitiya, A., Borca-Tasciuc, D. A., Mohamed, H. S., & Hella, M. M. (2009). Localized microwave heating in microwells for parallel DNA amplifica-tion applications. Applied Physics Letters, 94(6), 064106, https://doi.org/10.1063/1.3078273 .
Mao, H., Yang, T., & Cremer, P. S. (2002). A micro-fluidic device with a linear temperature gradient for parallel and combinatorial mea-surements. Journal of the American Chemical Soci-ety, 124(16), 4432, https://doi.org/10.1021/ja017625x
Zhang, K., Jian, A., Zhang, X., Wang, Y., Li, Z., & Tam, H. Y. (2011). Laser-induced thermal bubbles for microfluidic applications. Lab on a Chip, 11(7), 1389-1395, https://doi.org/10.1039/c0lc00520g .
Guijt, R. M., Dodge, A., van Dedem, G. W., de Rooij, N. F., & Verpoorte, E. (2003). Chemical and physical processes for integrated temperature control in microfluidic devices. Lab on a Chip, 3(1), 1-4, https://doi.org/10.1039/b210629a .
Mavraki, E., Moschou, D., Kokkoris, G., Vourdas, N., Chatzandroulis, S., & Tserepi, A. (2011). A conti-nuous flow μPCR device with integrated microhe-aters on a flexible polyimide substrate. Procedia Engineering, 25, 1245-1248, https://doi.org/10.1016/j.proeng.2011.12.307 .
Selva, B., Marchalot, J., & Jullien, M. C. (2009). An optimized resistor pattern for temperature gradi-ent control in microfluidics. Journal of Micro-mechanics and Microengineering, 19(6), 065002, https://doi.org/10.1088/0960-1317/19/6/065002 .
Hsieh, T. M., Luo, C. H., Huang, F. C., Wang, J. H., Chien, L. J., & Lee, G. B. (2008). Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction, https://doi.org/10.1016/j.snb.2007.10.063 . Sensors and Actuators B: Chemical, 130(2), 848-856.
Resnik, D., Vrtačnik, D., Možek, M., Pečar, B., & Amon, S. (2011). Experimental study of heat-treated thin film Ti/Pt heater and temperature sensor properties on a Si microfluidic plat-form. Journal of Micromechanics and Microengine-ering, 21(2), 025025, https://doi.org/10.1088/0960-1317/21/2/025025 .
Larraneta, E., Lutton, R. E., Woolfson, A. D., & Donnelly, R. F. (2016). Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports, 104, 1-32, https://doi.org/10.1016/j.mser.2016.03.001 .
Kim, Y. C., Park, J. H., & Prausnitz, M. R. (2012). Microneedles for drug and vaccine deli-very. Advanced drug delivery reviews, 64(14), 1547-1568, https://doi.org/10.1016/j.addr.2012.04.005 .
Smart, W. H., & Subramanian, K. (2000). The use of silicon microfabrication technology in pain-less blood glucose monitoring. Diabetes technology & therapeutics, 2(4), 549-559, https://doi.org/10.1089/15209150050501961 .
Gardeniers, H. J., Luttge, R., Berenschot, E. J., De Boer, M. J., Yeshurun, S. Y., Hefetz, M., ... & Van Den Berg, A. (2003). Silicon micromachined hol-low microneedles for transdermal liquid trans-port. Journal of Microelectromechanical systems, 12(6), 855-862, https://doi.org/10.1109/jmems.2003.820293 .
Chen, B., Wei, J., Tay, F. E., Wong, Y. T., & Iliescu, C. (2008). Silicon microneedle array with bio-degradable tips for transdermal drug deli-very. Microsystem Technologies, 14(7), 1015-1019, https://doi.org/10.1007/s00542-007-0530-y .
Lin, L., & Pisano, A. P. (1999). Silicon-processed microneedles. Journal of Microelectromechanical Systems, 8(1), 78-84, https://doi.org/10.1109/84.749406 .
Martanto, W., Moore, J. S., Couse, T., & Prausnitz, M. R. (2006). Mechanism of fluid infusion during microneedle insertion and retraction. Journal of Controlled Release, 112(3), 357-361, https://doi.org/10.1016/j.jconrel.2006.02.017 .
Doddaballapur, S. (2009). Microneedling with dermaroller. Journal of cutaneous and aesthetic surgery, 2(2), 110,
https://doi.org/10.4103/0974-2077.58529.
Wei-Ze, L., Mei-Rong, H., Jian-Ping, Z., Yong-Qiang, Z., Bao-Hua, H., Ting, L., & Yong, Z. (2010). Super-short solid silicon microneedles for trans-dermal drug delivery applications. International jo-urnal of pharmaceutics, 389(1-2), 122-129, https://doi.org/10.1016/j.ijpharm.2010.01.024 .
Teo, M. A. L., Shearwood, C., Ng, K. C., Lu, J., & Moochhala, S. (2005). In vitro and in vivo characte-rization of MEMS microneedles. Biomedical micro-devices, 7(1), 47-52, https://doi.org/10.1007/s10544-005-6171-y .
Davis, S. P., Martanto, W., Allen, M. G., & Pra-usnitz, M. R. (2005). Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Transac-tions on Biomedical Engineering, 52(5), 909-915, https://doi.org/10.1109/tbme.2005.845240 .
Park, J. H., Allen, M. G., & Prausnitz, M. R. (2006). Polymer microneedles for controlled-release drug delivery. Pharmaceutical research, 23(5), 1008-1019, https://doi.org/10.1007/s11095-006-0028-9 .
Bariya, S. H., Gohel, M. C., Mehta, T. A., & Sharma, O. P. (2012). Microneedles: an emerging trans-dermal drug delivery system. Journal of Pharmacy and Pharmacology, 64(1), 11-29, https://doi.org/10.1111/j.2042-7158.2011.01369.x .
Karande, P., Jain, A., & Mitragotri, S. (2006). Rela-tionships between skin's electrical impedance and permeability in the presence of chemical enhan-cers. Journal of Controlled Release, 110(2), 307-313, https://doi.org/10.1016/j.jconrel.2005.10.012 .
Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature biotechnology, 26(11), 1261-1268, https://doi.org/10.1038/nbt.1504 .
Resnik, D., Možek, M., Pečar, B., Dolžan, T., Janež, A., Urbančič, V., & Vrtačnik, D. (2015). Characteri-zation of skin penetration efficacy by Au-coated Si microneedle array electrode. Sensors and Actua-tors A: Physical, 232, 299-309, https://doi.org/10.1016/j.sna.2015.05.020 .
Deng, Y., Chen, J., Zhao, Y., Yan, X., Zhang, L., Choy, K., & Tang, T. (2016). Transdermal delivery of siRNA through microneedle array. Scientific re-ports, 6, 21422, https://doi.org/10.1038/srep21422 .
Kim, E., Erdos, G., Huang, S., Kenniston, T. W., Balmert, S. C., Carey, C. D. & Korkmaz, E. (2020). Microneedle array delivered recombinant corona-virus vaccines: Immunogenicity and rapid transla-tional development. EBioMedicine, 102743, https://doi.org/10.1016/j.ebiom.2020.102743 .
Resnik, D., Možek, M., Pečar, B., Janež, A., Urban-čič, V., Iliescu, C., & Vrtačnik, D. (2018). In vivo experimental study of noninvasive insulin micro-injection through hollow Si microneedle ar-ray. Micromachines, 9(1), 40, https://doi.org/10.3390/mi9010040 .
Iliescu, F. S., Teo, J. C. M., Vrtacnik, D., Taylor, H., & Iliescu, C. (2018). Cell therapy using an array of ultrathin hollow microneedles. Microsystem Technologies, 24(7), 2905-2912, https://doi.org/10.1007/s00542-017-3631-2 .
Li, Z., Khajepour, A., & Song, J. (2019). A compre-hensive review of the key technologies for pure electric vehicles. Energy, 182, 824-839, https://doi.org/10.1016/j.energy.2019.06.077
Tanaka, S., Chang, K. S., Min, K. B., Satoh, D., Yoshida, K., & Esashi, M. (2004). MEMS-based components of a miniature fuel cell/fuel reformer system. Chemical Engineering Journal, 101(1-3), 143-149,https://doi.org/10.1016/j.cej.2004.01.017.
Holladay, J. D., Jones, E. O., Dagle, R. A., Xia, G. G., Cao, C., & Wang, Y. (2004). High efficiency and low carbon monoxide micro-scale methanol pro-cessors. Journal of power sources, 131(1-2), 69-72, https://doi.org/10.1016/j.jpowsour.2004.01.003 .
Kawamura, Y., Ogura, N., Yamamoto, T., & Igaras-hi, A. (2006). A miniaturized methanol reformer with Si-based microreactor for a small PEMFC. Chemical Engineering Science, 61(4), 1092-1101, https://doi.org/10.1016/j.ces.2005.08.014 .
Hsueh, C. Y., Chu, H. S., Yan, W. M., & Chen, C. H. (2010). Transport phenomena and performance of a plate methanol steam micro-reformer with ser-pentine flow field design. Applied Energy, 87(10), 3137-3147, ps://doi.org/10.1016/j.apenergy.2010.02.027 .
Jeong, H., Kim, K. I., Kim, T. H., Ko, C. H., Park, H. C., & Song, I. K. (2006). Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 ca-talyst. Journal of power sources, 159(2), 1296-1299, https://doi.org/10.1016/j.energy.2019.06.077 .
Mei, D., Feng, Y., Qian, M., & Chen, Z. (2016). An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming. International Journal of Hydrogen Energy, 41(4), 2268-2277, https://doi.org/10.1016/j.ijhydene.2015.12.044 .
Huang, Y. X., Jang, J. Y., & Cheng, C. H. (2014). Fractal channel design in a micro methanol steam reformer. International journal of hydrogen ener-gy, 39(5), 1998-2007, https://doi.org/10.1016/j.ijhydene.2013.11.088 .
Sarafraz, M. M., Safaei, M. R., Goodarzi, M., & Arjomandi, M. (2019). Reforming of methanol with steam in a micro-reactor with Cu–SiO2 poro-us catalyst. International Journal of Hydrogen Energy, 44(36), 19628-19639, https://doi.org/10.1016/j.ijhydene.2019.05.215 .
Wang, H. S., Huang, K. Y., Huang, Y. J., Su, Y. C., & Tseng, F. G. (2015). A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yi-eld. Applied Energy, 138, 21-30, https://doi.org/10.1016/j.apenergy.2014.10.033 .
Resnik, D., Hočevar, S., Batista, J., Vrtačnik, D., Možek, M., & Amon, S. (2012). Si based methanol catalytic micro combustor for integrated steam reformer applications. Sensors and Actuators A: Physical, 180, 127-136, https://doi.org/10.1016/j.sna.2012.04.029 .
Peruško, D., Možek, M., Pečar, B., Aljančič, U., Resnik, D., Vrtačnik, D., & Amon, S. (2011, May). Temperature control of methanol fuel microrea-ctor for hydrogen production. In 2011 Proceedings of the 34th International Convention MIPRO (pp. 141-144). IEEE, https://doi.org/10.1109/mipro.2014.6859540 .
Pečar, B., Možek, M., Resnik, D., Vrtačnik, D., Aljančič, U., Penič, S., & Amon, S. (2010, May). Microflow-generator for fuel-cell methanol hydro-gen microreactor. In The 33rd International Con-vention MIPRO (pp. 110-115). IEEE, https://doi.org/10.1109/mipro.2014.6859540 .
Tsai, N. C., & Sue, C. Y. (2007). Review of MEMS-based drug delivery and dosing systems. Sensors and Actuators A: Physical, 134(2), 555-564, https://doi.org/10.1016/j.sna.2006.06.014 .
Böhm, S., Timmer, B., Olthuis, W., & Bergveld, P. (2000). A closed-loop controlled electrochemi-cally actuated micro-dosing system. Journal of Micromechanics and Microengineering, 10(4), 498, https://doi.org/10.1088/0960-1317/10/4/303 .
Reynaerts, D., Peirs, J., & Van Brussel, H. (1997). An implantable drug-delivery system based on shape memory alloy micro-actuation. Sensors and Actuators A: Physical, 61(1-3), 455-462, https://doi.org/10.1016/s0924-4247(97)80305-6 .
Koerner, J., Helmlinger, M., & Schuerle, H. (2009). U.S. Patent No. 7,584,903. Washington, DC: U.S. Patent and Trademark Office.
Ianchulev, T., Weinreb, R., Tsai, J. C., Lin, S., & Pasquale, L. R. (2018). High-precision piezo-ejection Su, Y. C., & Lin, L. (2004). A water-powered micro drug delivery system. Journal of Microelectromechanical Systems, 13(1), 75-82, https://doi.org/10.1109/jmems.2003.823215 .
Than, A., Liu, C., Chang, H., Duong, P. K., Cheung, C. M. G., Xu, C., ... & Chen, P. (2018). Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug deli-very. Nature communications, 9(1), 1-12, https://doi.org/10.1038/s41467-018-06981-w .
Kabata, A., Suzuki, H., Kishigami, Y., & Haga, M. (2005). Micro system for injection of insulin and monitoring of glucose concentration. In SENSORS, 2005 IEEE (pp. 4-pp). IEEE, https://doi.org/10.1109/icsens.2005.1597663 .
Vrtačnik D et al. Micro-sized PDMS membranes in sealed microfluidic reservoirs. Conference proce-edings 2016. 52nd International Conference MIDEM, September 28 - 30 2016, Ankaran, Slove-nia.
Vrtačnik D et al.. Nosljiv integrirani mikrodozirni sistem s poljem silicijevih mikroigel za transdermalni vnos zdravil : patent SI24564 (A), 2015-06-30. Lju-bljana: Urad RS za intelektualno lastnino, 2015.
Lei, K. F. (2014). Materials and fabrication tech-niques for nano-and microfluidic devices, https://doi.org/10.1039/9781849737609-00001 .
Barbooti, M. (Ed.). (2015). Environmental applica-tions of instrumental chemical analysis. CRC press, https://doi.org/10.1201/b18376 .
»https://www.elveflow.com«. Accessed 16.11.2020.
Sengupta, J., & Hussain, C. M. (2019). Graphene and its derivatives for Analytical Lab on Chip plat-forms. TrAC Trends in Analytical Chemistry, 114, 326-337, https://doi.org/10.1016/j.trac.2019.03.015 .
Moser, I., Jobst, G., Aschauer, E., Svasek, P., Var-ahram, M., Urban, G. & Berezov, T. T. (1995). Min-iaturized thin film glutamate and glutamine bio-sensors. Biosensors and Bioelectronics, 10(6-7), 527-532, https://doi.org/10.1016/b978-1-85617-242-4.50137-3 .
Yoon, J. Y., & Kim, B. (2012). Lab-on-a-chip path-ogen sensors for food safety. Sensors, 12(8), 10713-10741, https://doi.org/10.3390/s120810713 .
Weigl, B. H., Bardell, R. L., & Cabrera, C. R. (2003). Lab-on-a-chip for drug development. Advanced drug delivery reviews, 55(3), 349-377, https://doi.org/10.1016/s0169-409x(02)00223-5 .
Ertl, P., Sticker, D., Charwat, V., Kasper, C., & Lep-perdinger, G. (2014). Lab-on-a-chip technologies for stem cell analysis. Trends in biotechnolo-gy, 32(5), 245-253, https://doi.org/10.1016/j.tibtech.2014.03.004 .
Pol, R., Céspedes, F., Gabriel, D., & Baeza, M. (2017). Microfluidic lab-on-a-chip platforms for en-vironmental monitoring. TrAC Trends in Analytical Chemistry, 95, 62-68, https://doi.org/10.1016/j.trac.2017.08.001 .
Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-chip platforms for detec-tion of cardiovascular disease and cancer bi-omarkers. Sensors, 17(12), 2934, https://doi.org/10.3390/s17122934 .
Ai, Y., Zhang, F., Wang, C., Xie, R., & Liang, Q. (2019). Recent progress in lab-on-a-chip for phar-maceutical analysis and pharmacologi-cal/toxicological test. TrAC Trends in Analytical Chemistry, 117, 215-230, https://doi.org/10.1016/j.trac.2019.06.026 .
Jung, W., Han, J., Choi, J. W., & Ahn, C. H. (2015). Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technolo-gies. Microelectronic Engineering, 132, 46-57, https://doi.org/10.1016/j.mee.2014.09.024 .
Sia, S. K., & Kricka, L. J. (2008). Microfluidics and point-of-care testing. Lab on a Chip, 8(12), 1982-1983, https://doi.org/10.1039/b817915h .
Nguyen, T., Zoëga Andreasen, S., Wolff, A., & Duong Bang, D. (2018). From lab on a chip to po-int of care devices: The role of open source micro-controllers. Micromachines, 9(8), 403, https://doi.org/10.3390/mi9080403 .
Sia, S. K., & Kricka, L. J. (2008). Microfluidics and point-of-care testing. Lab on a Chip, 8(12), 1982-1983, https://doi.org/10.1039/b817915h .
Park, S., Zhang, Y., Lin, S., Wang, T. H., & Yang, S. (2011). Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnology advances, 29(6), 830-839, https://doi.org/10.1016/j.biotechadv.2011.06.017 .
Toley, B. J., Das, D., Ganar, K. A., Kaur, N., Meena, M., Rath, D., ... & Soni, S. (2018). Multidimensional Paper Networks: A New Generation of Low-Cost Pump-Free Microfluidic Devices. Journal of the In-dian Institute of Science, 98(2), 103-136, https://doi.org/10.1007/s41745-018-0077-1 .
Böhm, A., & Biesalski, M. (2017). based microflui-dic devices: A complex low-cost material in high-tech applications. MRS Bulletin, 42(5), 356,
https://doi.org/10.1557/mrs.2017.92.
Yetisen, A. K., Akram, M. S., & Lowe, C. R. (2013). Paper based microfluidic point-of-care diagnostic devices. Lab on a Chip, 13(12), 2210-2251, https://doi.org/10.1039/c3lc50169h .
Ahn, C. H., Choi, J. W., Beaucage, G., Nevin, J. H., Lee, J. B., Puntambekar, A., & Lee, J. Y. (2004). Disposable smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the IEEE, 92(1), 154-173, https://doi.org/10.1109/jproc.2003.820548 .
Neuzil, P., Pipper, J., & Hsieh, T. M. (2006). Dis-posable real-time microPCR device: lab-on-a-chip at a low cost. Molecular bioSystems, 2(6-7), 292-298, https://doi.org/10.1039/b605957k .
Sun, S., Yang, M., Kostov, Y., & Rasooly, A. (2010). ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab on a Chip, 10(16), 2093-2100, https://doi.org/10.1039/c003994b .
Upaassana, V. T., Ghosh, S., Chakraborty, A., Birch, M. E., Joseph, P., Han, J., ... & Ahn, C. H. (2019). Highly sensitive Lab on a Chip (LOC) immunoas-say for early diagnosis of respiratory disease cau-sed by respirable crystalline silica (RCS). Analytical chemistry, 91(10), 6652-6660, https://doi.org/10.1021/acs.analchem.9b00582 .
Tripoliti, E. E., Karanasiou, G. S., Ioannidou, P., Toumpaniaris, P., Goletsis, Y., Baussels, J., ... & Leekens, B. (2018, July). KardiaTool: An Integrated POC Solution for Non-invasive Diagnosis and Therapy Monitoring of Heart Failure Patients. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Soci-ety (EMBC) (pp. 3878-3881). IEEE, https://doi.org/10.1109/embc.2018.8513298 .
Hou, X., Zhang, Y. S., Trujillo-de Santiago, G., Alvarez, M. M., Ribas, J., Jonas, S. J., ... & Khademhosseini, A. (2017). Interplay between materials and microfluidics. Nature Reviews Mate-rials, 2(5), 1-15, https://doi.org/10.1038/natrevmats.2017.28 .
Bohr, A., Colombo, S., & Jensen, H. (2019). Future of Microfluidics in Research and in the Market. In Microfluidics for Pharmaceutical Applications (pp. 425-465). William Andrew Publishing, https://doi.org/10.1016/b978-0-12-812659-2.00016-8 .
]Lo, R. C. (2017). Microfluidics technology: future prospects for molecular diagnostics. Advanced Health Care Technologies, 3, 3-17, https://doi.org/10.2147/ahct.s94024 .
Tian, W. C., & Finehout, E. (2008). Current and Future Trends in Microfluidics within Biotechno-logy Research. In Microfluidics for Biological Appli-cations (pp. 385-411). Springer, Boston, MA, https://doi.org/10.1007/978-0-387-09480-9_11 .
DOI: https://doi.org/10.33180/InfMIDEM2021.101
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Borut Pečar, Drago Resnik, Matej Možek, Danilo Vrtačnik
This work is licensed under a Creative Commons Attribution 4.0 International License.