Novel Voltage-Mode PID Controller Using a Sin-gle CCTA and All Grounded Passive Components

Pratya Mongkolwai, Worapong Tangsrirat, Taweepol Suesut

Abstract


A compact voltage-mode proportional-integral-derivative (PID) controller based on the utilization of a single current conveyor transconductance amplifier (CCTA) is presented in this paper. The presented active PID controller is made up of a single CCTA, and four truly grounded passive components, i.e. two resistors, and two capacitors. The design consideration of the controller parameters has been examined. Besides, the crucial sensitivity performances of the controller parameters for ideal and non-ideal conditions have also been discussed. An application on the closed-loop test system is demonstrated to validate the practicability of the proposed PID controller circuit. To confirm the theoretical behavior, the proposed circuit is simulated with the PSPICE program using TSMC 0.35-um CMOS process technology. Experimental test results based on commercially available CFOA AD844 and OTA CA3080 integrated circuits are also provided to demonstrate the practicality of the proposed circuit.

Keywords


Current Conveyor Transconductance Amplifier (CCTA); proportional-integral-derivative (PID) controllers; feedback control system; voltage-mode circuit

Full Text:

PDF

References


K. Astrom, and T. Hagglund, “PID controllers: theory, design and tuning, 2nd edition,” North Carolina, Instrument Society of America, 1995.

S. Bennette, “Development of the PID controller,” IEEE Control Syst., vol. 13, no. 6, pp. 58–62, 1993, https://doi.org/10.1109/37.248006

C. Erdal, A. Toker, and C. Acar, “OTA-C based proportional-integral-derivative (PID) controller and calculating optimum parameter tolerances,” Turk. J. Elec. Eng. Comp. Sci., vol. 9, no. 2, pp. 189-198, 2001.

C. Erdal, A. Toker, and C. Acar, “A new proportional-integral-derivative (PID) controller realization by using current conveyors and calculating optimum parameter tolerances,” Istanb. Univ.-J. Electr. Electron. Eng., vol. 1, pp. 267-273, 2001.

E. Yuce, S. Tokat, A. Kizilkaya, and O. Cicekoglu, “CCII-based PID controllers employing grounded passive components,” Int. J. Electron. Commun. (AEU), vol. 60, no. 5, pp. 399–403, 2006, https://doi.org/10.1016/j.aeue.2005.03.017

C. Erdal, "A Proportional-Integral-Derivative (PID) controller realization by using current feedback amplifiers (CFAs) and calculating optimum parameter tolerances," Pak. J. Appl. Sci., vol. 2, no. 1, pp. 56–59, 2001, https://doi.org/10.3923/jas.2002.56.59

M. Sagbas, M. Koksal, and U. E. Ayten, “Design of dominantly proportional PID controller using a single commercially available active component,” in Proc. Int. Conf. Telecom. Signal Process., Italy, 2013, pp. 427–430, https://doi.org/10.1109/TSP.2013.6613967

U. E. Ayten, E. Yuce, and S. Minaei, “A voltage-mode PID controller using a single CFOA and on-ly grounded capacitors,” Microelectron. J., vol. 81, pp. 84–93, 2018, https://doi.org/10.1016/j.mejo.2018.09.010

Z. G. C. Taskiran, H. Sedef, and F. Anday, “A new PID controller circuit design using CFOAs,” Circ. Syst. Sig. Process., vol. 40, no. 3, pp. 1166–1182, 2021, https://doi.org/10.1007/s00034-020-010540-5

A. U. Keskin, “Design of a PID controller design employing CDBAs,” Int. J. Electr. Eng. Educ., vol. 43, no. 1, pp. 48–56, 2006, https://doi.org/10.7227/ijeee.43.1.5

P. Shrivastava, S. Surendra, R. K. Ranjan, A. Shrivastav, and B. Priyadarshini, “PI, PD and PID controllers using single DVCCTA,” Iranian J. Sci. Tech. Trans. Electr. Eng., vol. 43, no. 3, pp. 673–685, 2019, https://doi.org/10.1007/s40998-019-00180-z

W. Tangsrirat, “Voltage-mode analog PID controller using a single z-copy current follower transconductance amplifier (ZC-CFTA),” Informacije MIDEM, vol. 45, no. 3, pp. 175–179, 2015.

D. Prasad, M. Srivastava, Laxya, F. Jabin, G. Fatima, S. A. Khan, and S. Tanzeem, “Novel active PID controller employing VDTA,” in Proc. 2016 IEEE Int. Symp. Sig. Process. Inform. Tech. (ISSPIT), Limassol, Cyprus, 2016, pp. 286–289, https://doi.org/10.1109/ISSPIT.2016.7886050

R. Prokop, and V. Musil, “New modern circuit block CCTA and some its applications,” in Proc. 14th Int. Scientific Appl. Sci. Conf. – Electronics, Book 5, Sofia, 2005, pp. 93–98.

J. Budboonchu, T. Pukkalanun, and W. Tangsrirat, “Resistorless voltage-mode first-order allpass section using single current-controlled conveyor transconductance amplifier,” Indian J. Pure & Appl. Phys., vol. 53, no. 5, pp. 335–340, 2015.

N. Herencsar, J. Koton, and K. Vrba, “Single CCTA-based universal biquadratic filters employing minimum components,” Int. J. Comp. Electr. Eng., vol. 1, no. 3, pp. 307–310, 2009, https://doi.org/10.7763/ijcee.2009.v1.48

N. Pandey, S. Kapur, P. Arora, and S. Malhotra, “Novel voltage mode multifunction filter based on current conveyor transconductance amplifier,” ACEEE Int. J. Contr. Syst. Instrum., vol. 2, no. 1, pp. 42–45, 2011.

W. Tangsrirat, O. Chunnumsin, and T. Pukkala-nun, “Single-current-controlled sinusoidal oscillator with current and voltage outputs using single current-controlled conveyor transconductance amplifier and grounded passive elements,” Rev. Roum. Des Sci. Techn.-Électrotechn. et Énerg, vol. 60, no. 2, pp. 175–184, 2015.

W. Tangsrirat, “Dual-mode sinusoidal quadrature oscillator with single CCTA and grounded capacitors,” Informacije MIDEM, vol. 46, no. 3, pp. 130–135, 2016.

W. Tangsrirat, “Simple BiCMOS CCCTA design and resistorless analog function realization,” The Scientific World Journal, vol. 2014, Article ID 423979, 7 pages, 2014, https://doi.org/10.1155/2014/423979

A. Verma, S. K. Rai, and M. Gupta, “High frequency meminductor emulator using current conveyor transconductance amplifier and memristor,” in Proc. 2021 8th Int. Conf. Sig. Process. Integr. Network (SPIN), 2021, pp. 720–725, https://doi.org/10.1109/SPIN52536.2021.9566098

K. Ogata, Modern Control Engineering, 5th ed. Prentice-Hall, New Jersey, 2010.

Analog Devices, “60 MHz, 2000 V/μs, monolithic op amp with quad low noise,” AD844 datasheet, 1992.

Harris Semiconductor. 2 MHz, Operational Trans-conductance Amplifier (OTA). CA3080 datasheet; 1996.

E. Yuce, “Negative impedance converter with reduced non-ideal gain and parasitic impedance effects,” IEEE Trans. Circuits Syst. I- Reg. Paper, vol. 55, no. 1, pp. 276–283, 2008. https://doi.org/10.1109/tcsi.2007.913702

S. Minaei, and E. Yuce, “A simple CMOS-based inductor simulator and frequency performance improvement techniques,” Int. J. Electron. Com-mun. (AEU), vol. 66, no. 11, pp. 884–891, 2012. https://doi.org/10.1016/j.aeue.2012.03.005




DOI: https://doi.org/10.33180/InfMIDEM2022.303

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Pratya Mongkolwai, Worapong Tangsrirat, Taweepol Suesut

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.