Existence of Capacitive Effects in a Tungsten-based SDC Memristive System

ertuğrul karakulak

Abstract


Following the discovery of a thin-film memristive system behaving as a memristor in 2008, memcapacitor and memcapacitive systems have also been described and become hot research areas.  Tungsten-based SDC (Self-Directed Channel) memristors are already in the market and have already been used in circuit applications. They are modeled with the mean metastable switch memristor model in the literature. A memristor must have the three fingerprints described by Chua et al. In this paper, it is shown that the behavior of the Tungsten-based memristors is more complex than a memristive system and they do not always meet the three fingerprints of the memristor. It has been experimentally found that the capacitive effects are dominant at low frequencies when it is excited with a square wave voltage source when the Tungsten-based memristor is connected in series with a capacitor. It is important to model the new circuit element memristor accurately. “The Tungsten-based memristors” cannot be modeled just as a memristive system and only with the mean metastable switch memristor model. It is suggested that, Perhaps, it can be modeled considering memcapacitive effects.

Keywords


memristor; memristive systems; zero-crossing hysteresis curve; memcapacitive effects; memcapacitor

Full Text:

PDF

References


L. O. Chua, “Memristor-The Missing Circuit Ele-ment,” IEEE Trans. Circuit Theory, vol. 18, pp. 507-519, 1971. (doi: 10.1109/TCT.1971.1083337)

L. O. Chua, S. M. Kang, “Memristive devices and systems,” Proc. IEEE, vol. 64, pp. 209-223, 1976. (doi: 10.1109/PROC.1976.10092)

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature (Lon-don), vol. 453, pp. 80-83, 2008.

O. Kavehei, A. Iqbal, Y.S. Kim, K. Eshraghian, S.F. Al-Sarawi, and D. Derek, "The Fourth Element: Character-istics, Modelling, and Electromagnetic Theory of the Memristor," Proceedings of the Royal Society A: Math-ematical, Physical and Engineering Sciences, vol. 466, pp. 2175-2202, 2010. (doi: 10.1098/rspa.2009.0553)

T. Prodromakis, C. Toumazou, “A review on memris-tive devices and applications,” 17th IEEE International Conference on Electronics, Circuits and Systems, 934-937, 2010. (doi: 10.1109/ICECS.2010.5724666)

Y.V. Pershin, J. Martinez-Rincon, and M. Di Ventra, “Memory circuit elements: from systems to applica-tions,” Journal of Computational and Theoretical Nano-science, 8(3), 441-448, 2011. (doi: 10.1166/jctn.2011.1708)

Y. V. Pershin, M. Di Ventra, “Memory effects in complex materials and nanoscale systems,” Adv. Phys., 60, 145–227, 2011. (doi: 10.1080/00018732.2010.544961)

L. Chua, “Resistance switching memories are memristors,” Applied Physics A, 102, 765–783, 2011. (doi: 10.1007/978-3-319-76375-0_6)

R. Marani, G. Gelao, and A. G. Perri, “A review on memristor applications,” International Journal of Ad-vances in Engineering & Technology, 8(3), 294. 2015. (doi: 10.48550/arXiv.1506.06899)

S. Sangho, K. Kim, and S. M. Kang, “Memristor applications for programmable analog ICs,” IEEE Trans-actions on Nanotechnology, 10(2), 266-274, 2011. (doi: 10.1109/TNANO.2009.2038610)

Y. Pershin, M. Di Ventra, “Practical Approach to Programmable Analog Circuits with Memristors,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, p.p. 1857 – 1864, 2010. (doi: 10.1109/TCSI.2009.2038539)

S. Vongehr, X. Meng, “The missing memristor has not been found”, Scientific reports, 5(1), 11657, 2015. (doi: 10.1038/srep11657)

S. P. Adhikari, M. P. Sah, H. Kim, and L. O. Chua, “Three fingerprints of memristor,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 11, pp. 3008–3021, 2013, (doi: 10.1007/978-3-319-76375-0_5)

Y. N. Joglekar, S. J. Wolf. "The elusive memristor: properties of basic electrical circuits," European Journal of Physics 30.4, 661, 2009. (doi: 10.1088/0143-0807/30/4/001)

Z. Biolek, D. Biolek, and V. Biolkova, “SPICE model of memristor with nonlinear dopant drift,” Radio engi-neering, Vol. 18(2), pp. 210–214, 2009.

T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A versatile memristor model with nonline-ar dopant kinetics,” IEEE transactions on electron de-vices, Vol. 58(9), pp. 3099-3105, 2011. (doi: 10.1109/TED.2011.2158004)

J. Zha, H. Huang, and Y. Liu,“A novel window func-tion for memristor model with application in program-ming analog circuits,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63(5), 423-427, 2016. (doi: 10.1109/TCSII.2015.2505959)

Y. Oğuz, F. Gül, H. Eroğlu, “A New Window Func-tion for Memristor Modeling,” In 8th International Ad-vanced Technologies Symposium (IATS17), pp. 3498-3502, 2017.

E. Karakulak, R. Mutlu, “SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors,” Gazi University Journal of Sci-ence, 33(4), 766-777, 2020. (doi: doi.org/10.35378/gujs.605118)

R. Mutlu, T. Dabanoglu Kumru, “A Zeno Paradox: Some Well-known Nonlinear Dopant Drift Memristor Models have Infinite Resistive Switching Time,” Radio Engineering, vol. 32, no. 3, pp. 312-324, 2023. (doi: 10.13164/re.2023.0312)

M. Di Ventra, Yu. V. Pershin, and L. O. Chua “Cir-cuit Elements with Memory: Memristors, memcapaci-tors and meminductors,” Proc. IEEE, vol. 97, pp. 1717–1724, 2009. (doi: 10.1109/JPROC.2009.2021077)

E. Karakulak, R. Mutlu, “Explanation of Hysteresis Curve of a Fluxdependent Memcapacitor Memory capacitor Using Taylor Series and Parametric Func-tions,” 6th International Advanced Technologies Sym-posium, IATS 11, 16.05.2011-18.05.2011.

D. Park, P. Yang, H. J. Kim, K. Beom, H. H. Lee, C. J. Kang, and T. S. Yoon, “Analog reversible nonvolatile memcapacitance in metal-oxide-semiconductor mem-capacitor with ITO/HfOx/Si structure,” Applied Physics Letters, 113(16), 162102, 2018. (doi: 10.1063/1.5043275)

R. K. Singh, K. Mamta, “An account of spin memristive and memcapacitive systems: Next genera-tion memory devices,” IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861, vol. 6, no. 3, pp. 07-23, 2014.

J. Martinez-Rincon, M. Di Ventra, and Y. V. Pershin, “Solid-state memcapacitive system with negative and diverging capacitance,” Physical Review B, vol. 81, no. 19, pp. 195430, 2010. (doi: 10.1103/PhysRevB.81.195430)

M. Krems, Y. V. Pershin and M. Di Ventra, “Ionic Memcapacitive Effects in Nanopores,” Nano letters, vol. 10, no. 7, pp. 2674-2678, 2010. (doi: 10.1021/nl1014734)

J. Flak, and J. K. Poikonen, “Solid-state memcapac-itors and their applications," In: Memristor Networks, Springer, Cham, pp. 585-601, 2014. (doi: 10.1007/978-3-319-76375-0_43)

Y. Shen, G. Wang, Y. Liang, S. Yu, and H. H. C. Iu, “Parasitic memcapacitor effects on HP TiO2 memristor dynamics”, IEEE Access, vol. 7, pp. 59825-59831, 2019.(doi: 10.1109/ACCESS.2019.2914938)

J. Sun, E. Lind, I. Maximov, H. Q. Xu, “Memristive and Memcapacitive Characteristics of a Au/Ti–HfO2-InP/InGaAs Diode,” Electron Device Letters, IEEE, vol.32, no.2, pp.131-133, Feb. 2011. (doi: 10.1109/LED.2010.2090334)

J. Martinez-Rincon, and Y. V. Pershin,” Bistable nonvolatile elastic-membrane memcapacitor exhibit-ing a chaotic behavior,” IEEE transactions on electron devices, vol. 58, no. 6, pp. 1809-1812, 2011. (doi: 10.1109/TED.2011.2126022)

M. E. Fouda, and A. G. Radwan, “Resistive‐less memcapacitor‐based relaxation oscilla-tor,” International Journal of Circuit Theory and Appli-cations, vol. 43, no. 7, pp. 959-965, 2015. (doi: https://doi.org/10.1002/cta.1984)

Ş. Ç. Yener, R. Mutlu, “Small signal model of memcapacitor-inductor oscillation circuit,” in Electric Electronics, Computer Science, Biomedical Enginee-rings’ Meeting (EBBT), pp. 1-4, 2017. (doi: 10.1109/EBBT.2017.7956774)

Z. Hu, Y. Li, L. Jia, and J. Yu, “Chaotic oscillator based on voltage-controlled memcapacitor,” in Inter-national Conference on Communications, Circuits and Systems (ICCCAS), pp. 824-827, 2010. (doi: 10.1109/ICCCAS.2010.5581863)

K. Rajagopal, A. Akgul, S. Jafari, and B. Aricioglu, “A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications,” Nonlinear Dynamics, vol. 91, no. 2, pp. 957-974, 2018. (doi: 10.1007/s11071-017-3921-3)

F. Yuan, G. Wang, and X. Wang, “Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis,” Chaos: An Interdis-ciplinary Journal of Nonlinear Science, vol. 27, no. 3, pp. 033103, 2017. (doi: 10.1063/1.4975825)

F. Tulumbacı, Ş. Ç. Yener, R. Mutlu, “Stored Energy and the Charging Energy Efficiency in a Memcapacitor Circuit,” in 6th International Conference on Electrical Engineering and Electronics, 2020. (doi: 10.11159/eee20.105)

K. U. Demasius, A. Kirschen, and S. Parkin, “Energy-efficient memcapacitor devices for neuromorphic computing,” Nature Electronics, vol.4, no.10, pp. 748-756, 2021. (doi: 10.1038/s41928-021-00649-y)

Knowm, Self Directed Channel Memristors, Rev. 3.2, October 6, 2019, https://knowm.org/downloads/Knowm_Memristors.pdf. [accessed on July 2, 2023].

C. K. Volos, V. T. Pham, H. E. Nistazakis, I. N. Stouboulos, “A dream that has come true: Chaos from a nonlinear circuit with a real memristor,” International Journal of Bifurcation and Chaos, 30(13), 2030036, 2020, (doi: 10.1142/S0218127420300360)

L. Minati, L. V. Gambuzza, W. J. Thio, J. C. Sprott, and M. Frasca, “A chaotic circuit based on a physical memristor,” Chaos Solitons Fractals, 138, 109990, 2020. (doi: 10.1016/j.chaos.2020.109990)

M. A. Nugent, T. W. Molter, “AHaH Computing–From Metastable Switches to Attractors to Machine Learning,” PLoS ONE, 9, e85175, 2014. (doi: 10.1371/journal.pone.0085175)

C. Fernandez, A. Cirera, I. Vourkas, “Design Explo-ration of Threshold Logic in Memory and Experimental Implementation Using Knowm Memristors,” Int. Journ of Unconventional Computing, Vol. 18, pp. 249–267, 2023.

The Mean Metastable Switch Memristor Model in Xyce. Available online: https://knowm.org/the-mean-metastable-switchmemristor-model-in-xyce/ [accessed on 26 December 2021].

V. Ostrovskii, P. Fedoseev, Y. Bobrova, and D. Bu-tusov, “Structural and parametric identification of knowm memristors,” Nanomaterials, 12(1), 63, 2021. (doi: 10.3390/nano12010063)

R. Mutlu, "Solution of TiO2 memristor-capacitor series circuit excited by a constant voltage source and its application to calculate operation frequency of a programmable TiO2 memristor-capacitor relaxation oscillator,” Turkish Journal of Electrical Engineering & Computer Sciences, 23(5), pp. 1219-1229, 2015. (doi: 10.3906/elk-1108-38)

N. N. Urgan, C. Dalmış, and R. Mutlu, “Analysis of the HP Memristor and Capacitor (M-C) Series Circuit Using the Lambert W Function,” European J. Eng. App. Sci 3(2), 27-32, 2020.

M. A. Carrasco-Aguılar, F. E. Morales-López, C. Sánchez-López, R. Ochoa-Montiel, “Flux-charge analy-sis and experimental verification of a parallel memris-tor-capacitor circuit,” Memories-Materials, Devices, Circuits and Systems, vol. 4, p. 1–6, 2023, (doi: 10.1016/j.memori.2023.100043)

C. Dalmış, “Examination of polarity-dependent charging and discharging of capacitor circuits contai-ning Carbon and Tungsten based memristors,” Tekirdağ Namık Kemal University, Institute of Natural and App-lied Sciences, Master's thesis, 2021. (doi: 10.1016/j.memori.2023.100043)

S. M. Sze, “Physics of Semiconductor Devices 2nd ed.” John Wiley & Sons, New York, 362-390, 1981.

F. Parlaktürk, A. Agasiev, A. Tataroğlu, and Ş. Al-tindal, “Current-Voltage (IV) and Capacitance-Voltage (CV) Characteristics of Au/Bi4Ti3O12/SnO2 Struc-tures” Gazi University Journal of Science, 20(4), 97-102, 2007.

B. Mouttet, “A memadmittance systems model for thin film memory materials”, arXiv preprint arXiv:1003.2842, 2010. (doi: 10.48550/arXiv.1003.2842)

G. Zhou, Z. Ren, L. Wang, J. Wu, B. Sun, A. Zhou, G. Zhang, S. Zheng, S. Duan, and Q. Song, “Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device,” Nano Energy 63, 103793, 2019. (doi: 10.1016/j.nanoen.2019.05.079)

J. Gomez, I. Vourkas, A. Abusleme, G. C. Sirakoulis, and A. Rubio, “Voltage divider for self-limited analog state programing of memristors” IEEE Transactions on Circuits and Systems II: Express Briefs, 67(4), 620-624, 2019. (doi: 10.1109/TCSII.2019.2923716)




DOI: https://doi.org/10.33180/InfMIDEM2023.301

Refbacks



Copyright (c) 2023 ertuğrul karakulak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.