Cold Sintering of Perovskite–Perovskite Particu-late Composite Based on K0.5Na0.5NbO3 and BiFeO3

Samir Salmanov, Danjela Kuščer, Mojca Otoničar

Abstract


The cosintering of particulate composites often presents a challenge due to the conventionally high processing temperatures used. Inter-diffusion of species between two phases and their volatilization, formation of secondary phases, and cracking or delamination of ceramics are effects that hinder the coupling of functional properties and reduce the final responses of such composites. This is particularly relevant when producing perovskite–perovskite composites from phases that are conventionally sintered at different temperatures (Ts), such as K0.5Na0.5NbO3 (KNN; Ts≈1100 °C) and BiFeO3 (BFO; Ts≈800 °C). Obtaining high-quality KNN–BFO multifunctional composite was the goal of this study. We demonstrate herein that the low-temperature sintering technique known as the Cold Sintering Process (CSP) can be utilized for producing particulate perovskite–perovskite composites, specifically KNN–BFO. We show that cold-sintered KNN–BFO composites have a dense microstructure, good phase-to-phase contact, are crack-free and exhibit ferroelectric properties. Their dielectric and ferroelectric properties are strongly affected by the fraction of KNN, increasing polarization saturation, while BFO aids in increasing their dielectric breakdown strength.

Keywords


cold sintering process; ferroelectric; particulate composite; BiFeO3; K0.5Na0.5NbO3

Full Text:

PDF

References


G. H. Haertling, “Ferroelectric ceramics: history and technology,” J. Am. Ceram. Soc., vol. 82, no. 4, pp. 797–818, Apr. 1999, doi: 10.1111/j.1151-2916.1999.tb01840.x.

B. Malič et al., “Sintering of lead-free piezoelectric sodium potassium niobate ceramics,” Materials (Basel)., vol. 8, no. 12, pp. 8117–8146, Dec. 2015, doi: 10.3390/ma8125449.

K. Hui et al., “KNN based high dielectric constant X9R ceramics with fine grain structure and energy storage ability,” J. Am. Ceram. Soc., vol. 104, no. 11, pp. 5815–5825, Nov. 2021, doi: 10.1111/jace.17970.

T. Rojac et al., “BiFeO 3 Ceramics: Processing, Electrical, and Electromechanical Properties,” J. Am. Ceram. Soc., vol. 97, no. 7, pp. 1993–2011, Jul. 2014, doi: 10.1111/jace.12982.

N. Ortega, A. Kumar, J. F. Scott, and R. S. Katiyar, “Multifunctional magnetoelectric materials for device applications,” J. Phys. Condens. Matter, vol. 27, no. 50, p. 504002, Dec. 2015, doi: 10.1088/0953-8984/27/50/504002.

M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, “Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides,” Russ. J. Gen. Chem., vol. 73, no. 11, pp. 1676–1680, Nov. 2003, doi: 10.1023/B:RUGC.0000018640.30953.70.

R. Palai et al., “β phase and γ−β metal-insulator transition in multiferroic BiFeO3,” Phys. Rev. B, vol. 77, no. 1, p. 014110, Jan. 2008, doi: 10.1103/PhysRevB.77.014110.

M. S. Bernardo, “Synthesis, microstructure and properties of BiFeO3-based multiferroic materials: A review,” Boletín la Soc. Española Cerámica y Vidr., vol. 53, no. 1, pp. 1–14, Feb. 2014, doi: 10.3989/cyv.12014.

P. Kasaeipoor Naeini, T. Delshad Chermahin, M. Shayegh Boroujeny, B. Ebadzadeh, M. Nilforoushan, and M. Abdollahi, “Study of dielectric properties of lead-free multiferroic KNN/22.5 BaFe12O19 composites,” Adv. Ceram. Prog., vol. 7, no. 3, pp. 23–28, 2021, doi: 10.30501/ACP.2021.298611.1071.

S. Basu, K. R. Babu, and R. N. P. Choudhary, “Studies on the piezoelectric and magnetostrictive phase distribution in lead zirconate titanate–cobalt iron oxide composites,” Mater. Chem. Phys., vol. 132, no. 2–3, pp. 570–580, Feb. 2012, doi: 10.1016/j.matchemphys.2011.11.071.

P. Jenus, D. Lisjak, D. Kuscer, D. Makovec, and M. Drofenik, “The low‐temperature cosintering of cobalt ferrite and lead zirconate titanate ceramic composites,” J. Am. Ceram. Soc., vol. 97, no. 1, pp. 74–80, Jan. 2014, doi: 10.1111/jace.12600.

A. Marzouki et al., “New approach for designing bulk multiferroic composites made of two perovskite oxides with enhanced direct magnetoelectric coupling,” Scr. Mater., vol. 194, pp. 5–7, Mar. 2021, doi: 10.1016/j.scriptamat.2020.113673.

M. Yao et al., “Great multiferroic properties in BiFeO3/BaTiO3 system with composite-like structure,” Appl. Phys. Lett., vol. 122, no. 15, Apr. 2023, doi: 10.1063/5.0139017.

M. Yao et al., “Grain size and piezoelectric effect on magnetoelectric coupling in BFO/PZT perovskite-perovskite composites,” J. Alloys Compd., vol. 948, p. 169731, Jul. 2023, doi: 10.1016/j.jallcom.2023.169731.

J. Chen, L. Hu, J. Deng, and X. Xing, “Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications,” Chem. Soc. Rev., vol. 44, no. 11, pp. 3522–3567, 2015, doi: 10.1039/C4CS00461B.

T. C. Lu, J. Yang, Z. Suo, A. G. Evans, R. Hecht, and R. Mehrabian, “Matrix cracking in intermetallic composites caused by thermal expansion mismatch,” Acta Metall. Mater., vol. 39, no. 8, pp. 1883–1890, Aug. 1991, doi: 10.1016/0956-7151(91)90157-V.

J. Zhou, H. He, Z. Shi, G. Liu, and C.-W. Nan, “Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0.52Ti0.48O3∕CoFe2O4 composite ceramics,” J. Appl. Phys., vol. 100, no. 9, Nov. 2006, doi: 10.1063/1.2358191.

L. K. Pradhan, R. Pandey, R. Kumar, and M. Kar, “Lattice strain induced multiferroicity in PZT-CFO particulate composite,” J. Appl. Phys., vol. 123, no. 7, Feb. 2018, doi: 10.1063/1.5008607.

Z. Manzoor, A. Khalid, G. M. Mustafa, S. M. Ramay, S. Naseem, and S. Atiq, “Magnetoelectric coupling caused by strain mediation in hetero-structured spinel-perovskite multiferroic composites,” J. Magn. Magn. Mater., vol. 500, p. 166409, Apr. 2020, doi: 10.1016/J.JMMM.2020.166409.

J. D. Bucci, B. K. Robertson, and W. J. James, “The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO 3,” J. Appl. Crystallogr., vol. 5, no. 3, pp. 187–191, Jun. 1972, doi: 10.1107/S0021889872009173.

B. Malič, H. Razpotnik, J. Koruza, S. Kokalj, J. Cilenšek, and M. Kosec, “Linear thermal expansion of lead-free piezoelectric K0.5Na0.5NbO3 ceramics in a wide temperature range,” J. Am. Ceram. Soc., vol. 94, no. 8, pp. 2273–2275, Aug. 2011, doi: 10.1111/j.1551-2916.2011.04628.x.

A. Ndayishimiye, S. H. Bang, C. J. Spiers, and C. A. Randall, “Reassessing cold sintering in the framework of pressure solution theory,” J. Eur. Ceram. Soc., vol. 43, no. 1, pp. 1–13, Jan. 2023, doi: 10.1016/J.JEURCERAMSOC.2022.09.053.

Y. Ji et al., “Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna,” J. Eur. Ceram. Soc., vol. 41, no. 1, pp. 424–429, Jan. 2021, doi: 10.1016/J.JEURCERAMSOC.2020.08.053.

D. Wang et al., “Direct Integration of Cold Sintered, Temperature-Stable Bi2Mo2O9-K2MoO4 Ceramics on Printed Circuit Boards for Satellite Navigation Antennas,” J. Eur. Ceram. Soc., vol. 40, no. 12, pp. 4029–4034, Sep. 2020, doi: 10.1016/J.JEURCERAMSOC.2020.04.025.

J. Guo, S. S. Berbano, H. Guo, A. L. Baker, M. T. Lanagan, and C. A. Randall, “Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials,” Adv. Funct. Mater., vol. 26, no. 39, pp. 7115–7121, 2016, doi: 10.1002/adfm.201602489.

X. Zhao, J. Guo, K. Wang, T. Herisson De Beauvoir, B. Li, and C. A. Randall, “Introducing a ZnO-PTFE (Polymer) Nanocomposite Varistor via the Cold Sintering Process,” Adv. Eng. Mater., vol. 20, no. 7, p. 1700902, Jul. 2018, doi: 10.1002/adem.201700902.

H. Zubairi, F. Hussain, S. Sheikh, A. A. Shaikh, D. Wang, and I. M. Reaney, “Comparative study of cold assisted and conventional sintering of (1-2x) K0.5Na0.5NbO3-xBaTiO3-xBiFeO3 multiferroic ceramics,” Mater. Sci. Eng. B, vol. 296, p. 116632, Oct. 2023, doi: 10.1016/j.mseb.2023.116632.

S. Salmanov et al., “Impact of transient liquid phase on the cold sintering of multiferroic BiFeO3,” Under review at J. Eur. Ceram. Soc., 2024.

K. Tsuji, Z. Fan, S. H. Bang, S. Dursun, S. Trolier-McKinstry, and C. A. Randall, “Cold sintering of the ceramic potassium sodium niobate, (K0.5Na0.5)NbO3, and influences on piezoelectric properties,” J. Eur. Ceram. Soc., vol. 42, no. 1, pp. 105–111, Jan. 2022, doi: 10.1016/j.jeurceramsoc.2021.10.002.

S. Salmanov et al., “Structure and electrical properties of cold-sintered strontium-doped potassium sodium niobate,” J. Eur. Ceram. Soc., vol. 43, no. 16, pp. 7516–7523, Dec. 2023, doi: 10.1016/J.JEURCERAMSOC.2023.07.069.

M. Makarovic et al., “Tailoring the electrical conductivity and hardening in BiFeO3 ceramics,” J. Eur. Ceram. Soc., vol. 40, no. 15, pp. 5483–5493, Dec. 2020, doi: 10.1016/j.jeurceramsoc.2020.06.037.

J. Hreščak, B. Malič, J. Cilenšek, and A. Benčan, “Solid-state synthesis of undoped and Sr-doped K0.5Na0.5NbO3,” J. Therm. Anal. Calorim., vol. 127, no. 1, pp. 129–136, Jan. 2017, doi: 10.1007/s10973-016-5615-3.

A. Jabr, J. Fanghanel, Z. Fan, R. Bermejo, and C. Randall, “The effect of liquid phase chemistry on the densification and strength of cold sintered ZnO,” J. Eur. Ceram. Soc., vol. 43, 2023, doi: 10.1016/j.jeurceramsoc.2022.11.071.

A. Włódarkiewicz, M. E. Costa, and P. M. Vilarinho, “The dissolution of potassium sodium niobate (KNN) in aqueous media towards sustainable electroceramics sintering,” Mater. Des., vol. 233, p. 112169, Sep. 2023, doi: 10.1016/J.MATDES.2023.112169.

S. H. Han et al., “Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method,” Ceram. Int., vol. 36, no. 4, pp. 1365–1372, May 2010, doi: 10.1016/j.ceramint.2010.01.020.

A. F. Mark, M. Castillo-Rodriguez, and W. Sigle, “Unexpected plasticity of potassium niobate during compression between room temperature and 900°C,” J. Eur. Ceram. Soc., vol. 36, no. 11, pp. 2781–2793, Sep. 2016, doi: 10.1016/j.jeurceramsoc.2016.04.032.

M. Höfling et al., “Large plastic deformability of bulk ferroelectric KNbO3 single crystals,” J. Eur. Ceram. Soc., vol. 41, no. 7, pp. 4098–4107, Jul. 2021, doi: 10.1016/J.JEURCERAMSOC.2021.02.023.

K. Nakagawa, M. Iwasaki, Z. Fan, J. I. Roscow, and C. A. Randall, “The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3,” J. Eur. Ceram. Soc., vol. 43, no. 9, pp. 4015–4020, Aug. 2023, doi: 10.1016/J.JEURCERAMSOC.2023.02.057.

D. Kuscer et al., “Evolution of phase composition and microstructure of sodium potassium niobate –based ceramic during pressure-less spark plasma sintering and post-annealing,” Ceram. Int., vol. 45, no. 8, pp. 10429–10437, 2019, doi: 10.1016/j.ceramint.2019.02.102.




DOI: https://doi.org/10.33180/InfMIDEM2024.306

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Samir Salmanov, Danjela Kuščer, Mojca Otoničar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.