Lossy and Lossless Inductance Simulators and Universal Filters Employing a New Versatile Active Block
Abstract
Keywords
Full Text:
PDFReferences
İbrahim, M. A., Minaei, S., Yüce, E., Herencsar, N., & Koton, J. (2012). Lossy/lossless floating/grounded inductance simulation using one DDCC.
Yuce, E. (2006). Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. International Journal of Electronics, 93(10), 679-688.
Metin, B., & Cicekoglu, O. (2006). A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Transactions On Circuits And Systems II: Express Briefs, 53(6), 483-486.
Cicekoglu, M. O. (1998). Active simulation of grounded inductors with CCII+ s and grounded passive elements. International Journal of Electronics, 85(4), 455-462.
Alpaslan, H., & Yuce, E. (2015). Inverting CFOA based lossless and lossy grounded inductor simulators. Circuits, Systems, and Signal Processing, 34(10), 3081-3100.
Ferri, G., & Guerrini, N. C. (2003). Low-voltage low-power CMOS current conveyors. Springer Science & Business Media.
Mohan, P. A. (2012). Current-mode VLSI analog filters: design and applications. Springer Science & Business Media.
Alzaher, H. A. (2008). A CMOS digitally programmable universal current-mode filter. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(8), 758-762.
Van Valkenburg, M. E. (1982). Analog filter design (pp. 136-137). Holt, Rinehart, and Winston.
Pathak, J. K., Singh, A. K., & Senani, R. (2016). New canonic lossy inductor using a single CDBA and its application. International Journal of Electronics, 103(1), 1-13.
Metin, B. (2012). Canonical inductor simulators with grounded capacitors using DCCII. International Journal of Electronics, 99(7), 1027-1035.
Pandey, R., Pandey, N., Paul, S. K., Singh, A., Sriram, B., & Trivedi, K. (2011). New topologies of lossless grounded inductor using OTRA. Journal of Electrical and Computer Engineering, 2011, 7.
Yuce, E., & Minaei, S. (2017). Commercially Available Active Device Based Grounded Inductor Simulator and Universal Filter with Improved Low Frequency Performances. Journal of Circuits, Systems and Computers, 26(04), 1750052.
Metin, B., Herencsar, N., Koton, J., & Horng, J. W. (2014). DCCII-based novel lossless grounded inductance simulators with no element matching constrains. Radioeng J, 23, 532-4538.
Çam, U., Kaçar, F., Cicekoglu, O., Kuntman, H., & Kuntman, A. (2003). Novel grounded parallel immittance simulator topologies employing single OTRA. AEU-International Journal of Electronics and Communications, 57(4), 287-290.
Yuce, E., Minaei, S., & Cicekoglu, O. (2005). A novel grounded inductor realization using a minimum number of active and passive components. Etri Journal, 27(4), 427-432.
Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Limitations of the simulated inductors based on a single current conveyor. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(12), 2860-2867.
Yuce, E., & Minaei, S. (2008). A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(1), 266-275.
Yuce, E. (2009). Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integrated Circuits and Signal Processing, 59(1), 77-82.
Yuce, E., & Minaei, S. (2009). On the realization of simulated inductors with reduced parasitic impedance effects. Circuits, Systems, and Signal Processing, 28(3), 451-465.
Kumar, P., & Senani, R. (2010). New grounded simulated inductance circuit using a single PFTFN. Analog Integrated Circuits and Signal Processing, 62(1), 105.
Kaçar, F., & Yeşil, A. (2010). Novel grounded parallel inductance simulators realization using a minimum number of active and passive components. Microelectronics Journal, 41(10), 632-638.
Gupta, A., Senani, R., Bhaskar, D. R., & Singh, A. K. (2012). OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits, Systems, and Signal Processing, 31(2), 489-499.
Kacar, F., & Kuntman, H. (2011). CFOA-based lossless and lossy inductance simulators. Radioengineering, 20(3), 627-631.
Kaçar, F., Yeşil, A., Minaei, S., & Kuntman, H. (2014). Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. AEU-International Journal of Electronics and Communications, 68(1), 73-78.
Maheshwari, S. (2013). Current conveyor all-pass sections: brief review and novel solution. The Scientific World Journal, 2013.
Senani, R. (1996). A simple approach of deriving single-input-multiple-output current-mode biquad filters. Frequenz, 50(5-6), 124-127.
Horng, J. W. (2001). High-input impedance voltage-mode universal biquadratic filter using three plus-type CCIIs. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(10), 996-997.
Horng, J. W., Hsu, C. H., & Tseng, C. Y. (2012). High input impedance voltage-mode universal biquadratic filters with three inputs using three CCs and grounding capacitors. Radioengineering, 21(1), 290-296.
Herencsar, N., Koton, J., & Vrba, K. (2009). Single CCTA-Based Universal BiquadraticFilters Employing Minimum Components.
International Journal of Computer and Electrical Engineering, 1(3), 307.
Horng, J. W., & Jhao, Z. Y. (2013). Voltage-mode universal biquadratic filter using single DVCC. ISRN Electronics, 2013.
Ranjan, A., & Paul, S. K. (2011). Voltage mode universal biquad using CCCII. Active and Passive Electronic Components, 2011.
Pushkar, K. L., Bhaskar, D. R., & Prasad, D. (2013). A new MISO-type voltage-mode universal biquad using single VD-DIBA. ISRN Electronics, 2013.
Pathak, J. K., Singh, A. K., & Senani, R. (2013). New voltage mode universal filters using only two CDBAs. ISRN Electronics, 2013.
Chang, C. M., & Chen, H. P. (2003). Universal capacitor-grounded voltage-mode filter with three inputs and a single output. International Journal of Electronics, 90(6), 401-406.
Chang, C. M., & Chen, H. P. (2005). Single FDCCII-based tunable universal voltage-mode filter. Circuits, Systems, and Signal Processing, 24(2), 221-227.
Chiu, W. Y., & Horng, J. W. (2007). High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(8), 649-652.
Sagbas, M., Ayten, U. E., & Sedef, H. (2010). Current and voltage transfer function filters using a single active device. IET circuits, devices & systems, 4(1), 78-86.
Prasad, D., Bhaskar, D. R., & Singh, A. K. (2009). Universal current-mode biquad filter using dual output current differencing transconductance amplifier. AEU-International Journal of Electronics and Communications, 63(6), 497-501.
Beg, P., & Maheshwari, S. (2014). Generalized filter topology using grounded components and single novel active element. Circuits, Systems, and Signal Processing, 33(11), 3603-3619.
Jerabek, J., & Vrba, K. (2010). SIMO type low-input and high-output impedance current-mode universal filter employing three universal current conveyors. AEU-International Journal of Electronics and Communications, 64(6), 588-593.
Wang, C., Liu, H., & Zhao, Y. (2008). A new current-mode current-controlled universal filter based on CCCII (±). Circuits, Systems, and Signal Processing, 27(5), 673-682.
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Informacije MIDEM