A 0.35µm Low-Noise Stable Charge Sensitive Am-plifier for Silicon Detectors Applications
Abstract
Keywords
Full Text:
PDFReferences
A. Walenta, et al., Vertex Detection in a Stack of Si-drift Detectors for High Resolution Gamma-ray Imaging. ‘’ Proceedings of the IEEE NSS-MIC 2003, M3-40, USA, 2003, pp. 1815-18, DOI: 10.1109/NSSMIC.2003.1352231.
D. Bortoletto, How and why silicon sensors are becoming more and more intelligent? ‘Journal of Instrumentation, 2015, 10, art. no.C08016. DOI: 10.1088/1748-0221/10/08/C08016
E. J. Schioppa, et al,“Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip,” IEEE Tran.Nucl. Sci., vol. 62, no. 5, pp. 2349 –2359, 2015, DOI: 10.1109/TNS.2015.2475124.
I. Peric, “A novel monolithic pixel detector implemented in high-voltage CMOS technology, ”in IEEE Nuclear Science Symposium Conference Record, USA, Oct, 2007, pp. 1033–1039. DOI: 10.1109/NSSMIC.2007.4437188.
T. Noulis et al, “Noise optimized charge-sensitive CMOS amplifier for capacitive radiation detectors," IET Circ. Dev. Syst . vol. 2, pp. 324 - 334, 2008 DOI: 10.1049/iet-cds:20070223
T.I. Badal, M.B.I. Reaz, M.A.S.Bhuiyan, and N. Kamal, “CMOS Transmitters for 2.4-GHz RF Devices: Design Architectures of the 2.4-GHz CMOS Transmitter for RF Devices,” IEEE Microwave Magazine, vol.20, no. 1, pp. 38-61, 2019, DOI: 10.1109/MMM.2018.2875607
M.A.S. Bhuiyan, M.T.I. Badal,M.B.I. Reaz, M.L.Crespo, and A. Cicuttin, “Design Architectures of the CMOS Power Amplifier for 2.4 GHz ISM Band Applications: An Overview.,” Electronics,vol 8, no. 5, pp. 477, 2019, DOI: 10.3390/electronics8050477
A. Costantini, et al., “A Low-Power CMOS 0.13 µm Charge-Sensitive Preamplifier for GEM Detectors,” Proceedings of the 2013 International Conference on IC Design & Technology 2013, Italy, 2013, pp.147-150, DOI: 10.1109/ICICDT.2013.6563324
V. Valente et al, “Design of a wideband CMOS Impedance Spectroscopy ASIC Analog Front-End for Multichannel Biosensor Interfaces”, Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy, pp. 885-888, 2015, DOI: 10.1109/EMBC.2015.7318504
H. Wang et al, “A Charge Sensitive Pre-Amplifier for Smart point-of Care Devices Employing Polymer Based Lab-on-a-Chip”, IEEE Trans. Cir, Syst II, 2018, vol. 65, pp.984 – 988, DOI: 10.1109/TCSII.2018.2798929.
A. Baschirotto et al, A fast and low noise charge sensitive preamplifier in 90nm technology; Journal of Instrumentation, 2012, vol. 7, art. No. C01003, pp. 1-8, DOI: 10.1088/1748-0221/7/01/C01003
N. Deferm, P. Reynaert, “CMOS Front Ends for Millimeter Wave Wireless Communication System”, ACSP. Analog Circuits And Signal Processing; ; 1st edition, Springer. ISBN 978-3-319-13951-7
V. Re et al, “ Survey of Noise Performances and Scaling Effects in Deep Submicron CMOS Devices from Different Foundries”, Proceedings of the IEEE Symposium Conference Record Nuclear Science, Italy, pp. 1368-72, 2004, DOI: 10.1109/NSSMIC.2004.1462496
A. Seljak et al., “A fast, low power and low noise charge sensitive amplifier ASIC for a UV imaging single photon detector”, Journal of Instrumentation, vol. 7, Art. no. C01003, 2017, DOI: 10.1088/1748-0221/12/04/T04007..
G. Bertuccio and S. Caccia, “Progress in ultra-low-noise ASICs for radiation detectors,” Nucl. Instrum. Methods Phys. Res. A, vol.579, no. 1, pp. 243–246, 2007, DOI: 10.1016/j.nima.2007.04.042
N. Cong Dao et al, “An enhanced MOSFET threshold voltage model for 6-300K t emperature range”, Journal of Microelectronics reliability, vol. 69, pp. 36-39, 2017, DOI: 10.1016/j.microrel.2016.12.007
H. Zhao, X. Liu, “Modeling of a standard 0.35µm CMOS technology operating from 77K to 300K”, Cryogenics vol. 59, pp. 49–59, 2014, DOI: 10.1016/j.cryogenics.2013.10.003.
F. Faccio and G. Cervelli, “Radiation-induced edge effects in deep submicron CMOS transistors”, IEEE Trans. Nucl. Sci, vol. 52, no. 6, pp. 2413–2420, 2005, DOI: 10.1109/TNS.2005.860698
T. Tang et al, “An Integrated Multichannel Neural Recording Analog Front-End ASIC with Area-Efficient Driven Right Leg Circuit”, Proceedings of the IEEE Eng Med Biol Soc. Seogwipo, South Korea, 2017, 217-220, DOI: 10.1109/EMBC.2017.8036801.
Z. Zhou et al, “An Analog Integratewd Front-Ent Amplifier For Neural Applications”, Proceedings of the 2016 International Conference on Integrated Circuits and Microsystems, Chengdu, China, November, 2016, 135-139, DOI: 10.1109/ICAM.2016.7813579
F. Ciciriello et al, “A new Front-End ASIC for GEM detectors with time and charge measurement capabilities”, Nucl. Instrum. Methods Phys. Res. A, vol. 824, pp. 265-267, 2016, DOI: 10.1016/j.nima.2015.12.048
R. Baur et al, “Frond-Electronics for the CERES TPC-detector”, Nucl. Instrum. Methods Phys. Res. A, vol.409, no. 1, pp. 278–285, 1998, DOI: 10.1016/S0168-9002(97)01280-1
P. O’Connor et al, “Ultra Low Noise CMOS preamplifier-shaper for X-ray spectroscopy”, Nucl. Instrum. Methods Phys. Res. A, vol.409, no. 1, pp. 315–321, 1998, DOI: 10.1016/S0168-9002(97)01289-8
Bernd J. Pichler, et al, “Integrated low-Noise Low-Power Fast Charge Sensitive Preamfier for Avalanche Photodiodes in JFET-CMOS Technology “IEEE Trans. Nucl. Sci, vol. 48, no. 6, pp. 2370 – 2374, 2001. DOI: 10.1109/23.983270
X. Llopart et al, “Study of low power front-ends for hybrid pixel detectors with sub-ns time tagging”, vol. 14, article no. C01024, 2019, DOI: 10.1088/1748-0221/14/01/C01024
A. Pullia and S. Capra, “ Experimental performance of a highly-innovative low-noise charge-sensitive preamplifier with integrated range-boosted”, vol. 13, article no. C12004, 2018, DOI: 10.1088/1748-0221/13/12/c12004
DOI: https://doi.org/10.33180/InfMIDEM2020.101
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Mohammad Arif Sobhan Bhuiyan
This work is licensed under a Creative Commons Attribution 4.0 International License.