BP neural network in predicting thermal fatigue life of microelectronic chip
Abstract
The present study gives an efficient approach for the prediction of thermal fatigue of microelectronic chips under cyclic thermal load using back propagation (BP) artificial neural network method. Strain based and stress-strain based thermal fatigue life models are respectively established according to the experimental results of thermal fatigue and singularity parameters at the failure interface by finite element method (FEM). The BP approach is configured to predict the singularity parameters at failure interface based on the dimensions, thermal-mechanical properties of solders in the new chips. Therefore, their thermal fatigue lives can be calculated. From the results of the present investigation, it is observed that the prediction of thermal fatigue lives by BP model are in good agreement with the experimental results.
Keywords
Full Text:
PDFReferences
M Musallam, C Buttay, CM Johnson. Real-time compact electronic thermal modeling for health monitoring. 2007 European Conference on Power Electronic and Applications, Aalborg, 2007, pp. 1-10. http://doi.org/ 10.1109/EPE.2007.4417325.
J Ye, K Yang, HZ Ye, A Emadi. A fast electro-thermal model of traction inverters for electrified vehicles. IEEE Transactions on Power Electronics, 2017, 32(5): 3920-3934. http://doi.org/ 10.1109/TPEL.2016.2585526.
CB Shen, Z Hai, C Zhao, JW Zhang, JL Evans, MJ Bozack, JC Suhling. Packaging reliability effect of ENIG and ENEPIG surface finishes in board level thermal test under long-term aging and cycling. Materials, 2017, 10(5): 451-464. http://doi.org/10.3390/ ma10050451.
OO Osarumen, EH Amalu, PO Olagbegi. Effect of operating temperature on degradation of solder joints in crystalline silicon photovoltaic modules for improved reliability in hot climates. Solar Energy, 2018, 170: 682-693. https://doi.org/10.1016/j.solener.2018.06.007
L Yang, L Zhu, YC Zhang, SY Zhou, GQ Wang, S Shen, XL Shi. Microstructure, IMCs layer and reliability of Sn-58Bi solder joint reinforced by Mo nanoparticles during thermal cycling. Materials Characterization, 2019, 148: 280-291. http://doi.org/ j.matchar.2018.12.012.
WW Lee, LT Nguyen, GS Selvaduray. Solder joint fatigue models: review and applicability to chip scale packages. Microelectronics Reliability, 2000, 40(2): 231-44. http://doi.org/ 10.1016/s0026-2714(99)00061-x
QS Zhu, F Gao, HC Ma, Z. Liu, JD Guo, L Zhang. Failure behavior of flip chip solder joint under coupling condition of thermal cycling and electrical current. Journal of Materials Science: Materials in Electronics, 2018, 29(6): 5025-5033. https://doi.org/ 10.1007/s10854-017-8464-3.
H Lu, HL Shi, M Zhou. Thermally induced deformation of solder joints in real packages: Measurement and analysis. Microelectronics Reliability, 2006, 46: 1148-1159. https://doi.org/ 10.1016/j.microrel.2005.10.002.
FJ Wang, DY Li, S Tian, ZJ Zhang, JH Wang, C Yan. Interfacial behaviors of Sn-Pb, Sn-Ag-Cu Pb-free and mixed Sn-Ag-Cu/Sn-Pb solder joints during electromigration. Microelectronics Reliability, 2007, 73: 106-115. https://doi.org/10.1016/ j.microrel.2017.04.031.
L Wentlent, TM Alghoul, CM Greene, P Borgesen. Effects of amplitude variations on deformation and damage in evolution in SnAgCu solder in isothermal cycling. Journal of Electronic Materials, 2018, 47(5): 2752-2760. https://doi.org/ 10.1007/s11664-018-6129-5.
H Ye, SB Xue, L Zhang, F Ji, W Dai. Reliability evaluation of CSP soldered joints based on FEM and Taguchi method. Computational Materials Science, 2010, 48(3): 509-512. https://doi.org/ 10.1016/j.commatsci.2010.02.014.
P Yang, W Li. Numerical analysis on thermal characteristics for chip scale package by integrating 2D/3D models. International Journal of Numerical Modelling, 2009, 22: 43-55. https://doi.org/ 10.1002/jnm.694.
VN Le, L Benabou, QB Tao, V Etgens. Modeling of intergranular thermal fatigue cracking of a lead-free solder joint in a power electronic module. International Journal of Solids and Structures, 2017, 106-107: 1-12. https://doi.org/ 10.1016/j.ijsolstr.2016.12.003.
T Hattori, S Sakata, G Murakami. A stress singularity parameter approach for evaluating the interfacial reliability of plastic encapsulated lsi devices. ASME Journal of Electronic Package, 1989, 111: 243-248. https://doi.org/ 110.1115/1.3226542.
HL Groth. Stress singularities and fracture at interface corners in bonded joints. International Journal of Adhesion and Adhesives, 1988, 8: 107-113. https://doi.org/ 10.1016/0143-7496(88)90024-3.
ED Reedy Jr, TR Guess. Comparison of butt tensile strength data with interface corner stress intensity factor prediction. International Journal of Solids and Structures, 1993, 30(21): 2929-2936. https://doi.org/ 10.1016/0020-7683(93)90204-k.
J Liang, N Gollhardt, PS Lee, S Heinrich, S Schroeder. An integrated fatigue life prediction methodology for optimum design and reliability assessment of solder interconnections. Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference, 1997, pp. 1583-1592.
D. Kim, J. Kim, SB Jung. Evaluation of solder joint reliability in flip chip package under thermal shock test. Thin Solid Films, 2006, 504(1-2): 426-430. https://doi.org/ 10.1016/j.tsf.2005.09.097.
M Erinc, PJ. Schreurs, MGD Geers. Integrated numerical-experimental analysis of interfacial fatigue fracture in SnAgCu solder joints. International Journal of Solids and Structures, 2007, 44 (17): 5680-5694. https://doi.org/ 10.1016/j.ijsolstr.2007.01.021.
D Munz, YY Yang. Stress singularities at interface in bonded dissimilar materials under mechanical and thermal loading. Journal of Applying Mechanics, 1992, 59: 857-861. https://doi.org/ 10.1115/1.2894053.
TT Pleune, OK Chopra. Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels. Nuclear Engineering and Design, 2000, 197(1-2): 1-12. https://doi.org/ 10.1016/S0140-6701(00)96446-4.
VH Venkatesh, J Rack. A neural network approach to elevated temperature creep-fatigue life prediction. International Journal of Fatigue, 1999, 21: 225-234. https://doi.org/ 10.1016/s0142-1123(98)00071-1.
ME Haque, KV Sudhakar. Prediction of corrosion-fatigue behavior DP steel through artificial neural network. International Journal of Fatigue, 2001, 23: 1-4. https://doi.org/ 10.1016/s0142-1123(00)00074-8.
JR Mohantya, TK Mahantaa, A Mohantyb, DN Thatoi. Prediction of constant amplitude fatigue crack growth life of 2024 T3Al alloy with R-ratio effect by GP. Applied Soft Computing, 2015, 26: 428-434. https://doi.org/ 10.1016/j.asoc.2014.10.024.
SF Ding, CY Su, JZ Yu. An optimizing BP neural network algorithm based on genetic algorithm. Artificial Intelligence Review, 2011, 36:153-162. https://doi.org/10.1007/ s10462-011-9208-z.
XG Huang, ZY Han, Interface singular field analysis and thermal fatigue failure of solder joint in a stacked electronic modules. Journal of Materials Science: Materials in Electronics, 2016, 27: 8299-8311. https://doi.org/ 10.1007/s10854-016-4838-1.
H.Koguchi, N.Suzuki. Singular stress fields in anisotropic bonded joints considering interface stress and interface elasticity. Journal of Applied Mechanics, 2014, 81(7): 1003-1012. https://doi.org/10.1115/1.4026840.
S Wiese, E Meusel. Characterization of lead-free solders in flip chip joints. ASME Journal of Electronic Packaging, 2013, 125(4): 531-538. https://doi.org/ 10.1115/1.1604155.
H Koguchi. Stress singularity analysis in three-dimensional bonded structure. International Journal of Solids and Structures, 1997, 34(4): 461-480. https://doi.org/10.1016/ S0020-7683(96)00028-5.
FM Guo, ML Feng, DF Nie, JQ Xu, MS Bhuiyan, Y Mutoh. Fatigue life prediction of SUS 630 (H900) steel under high cycle loading. Acta Mechanica Solida Sinica, 2013, 26(6): 584-591. https://doi.org/10.1016/s0894-9166(14)60003-3.
X Yao, Y Liu. A new evolutionary system for evolving artificial neural networks. IEEE Trans on Neural Networks, 1997, 8(3): 694-713. https://doi.org/ 10.1109/72.572107.
DOI: https://doi.org/10.33180/InfMIDEM2020.102
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 xiaoguang huang, Dianhao Zhang, Dianhao Zhang, Zhiqiang Wang, Zhiqiang Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.