Modeling of static NBT stressing in p-channel VDMOSFETs using Least Square Method

Nikola Mitrovic, Danijel Danković, Branislav Ranđelović, Zoran Prijić, Ninoslav Stojadinović

Abstract


Negative bias temperature instability (NBTI) is a phenomenon commonly observed in p-channel metal-oxide semiconductor (MOS) devices simultaneously exposed to elevated temperature and negative gate voltage. This paper studies threshold voltage shift under static stress associated with the NBT stress induced buildup of both interface traps and oxide trapped charge in the commercial p-channel power VDMOSFETs IRF9520, with the goal to design an electrical model. Experiments have done with the goal to obtain data for modeling. Change of threshold voltage follow power law tn, where parameter n is different depending on the stressing phase and stressing conditions. Two modeling circuits are proposed and modeling circuit elements values are analyzed. Values of modeling circuits elements are calculated using least square method approximation conducted on obtained experimental results. Modeling results of both circuits are compared with the measured results and then further discussed.

Keywords


NBTI; VDMOSFET; electrical circuit; modeling; least square method;

Full Text:

PDF

References


Ogawa, S., Shimaya, M., & Shiono, N. (1995). Interface-trap generation at ultrathin SiO2 (4-6 nm)-Si interfaces during negative-bias temperature aging. Journal of Applied Physics, 77(3). https://doi.org/10.1063/1.358977

Schroder, D. K., & Babcock, J. A. (2003). Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing. Journal of Applied Physics, 94(1). https://doi.org/10.1063/1.1567461

Stathis, J. H., & Zafar, S. (2006). The negative bias temperature instability in MOS devices: A review. Microelectronics Reliability, 46(2–4), 270–286. https://doi.org/10.1016/j.microrel.2005.08.001

Stojadinović, N., Danković, D., Djorić-Veljković, S., Davidović, V., Manić, I., & Golubović, S. (2005). Negative bias temperature instability mechanisms in p-channel power VDMOSFETs. Microelectronics Reliability, 45(9–11), 1343–1348. https://doi.org/10.1016/j.microrel.2005.07.018

Grasser, T., Aichinger, T., Pobegen, G., Reisinger, H., Wagner, P. J., Franco, J., Nelhiebel, M., & Kaczer, B. (2011). The “permanent” component of NBTI: Composition and annealing. IEEE International Reliability Physics Symposium Proceedings, 6A.2.1-6A.2.9. https://doi.org/10.1109/IRPS.2011.5784543

Danković, D., Manić, I., Djorić-Veljković, S., Davidović, V., Golubović, S., & Stojadinović, N. (2006). NBT stress-induced degradation and lifetime estimation in p-channel power VDMOSFETs. Microelectronics Reliability, 46(9–11), 1828–1833. https://doi.org/10.1016/j.microrel.2006.07.077

Saluja, K. K., Vijayakumar, S., Sootkaneung, W., & Yang, X. (2008). NBTI degradation: A problem or a scare? Proceedings of the IEEE International Frequency Control Symposium and Exposition, 137–142. https://doi.org/10.1109/VLSI.2008.43

Stojadinovic, N., Manic, I., Davidovic, V., Dankovic, D., Djoric-Veljkovic, S., Golubovic, S., & Dimitrijev, S. (2003). Effects of electrical stressing in power VDMOSFETs. 2003 IEEE Conference on Electron Devices and Solid-State Circuits, EDSSC 2003, 291–296. https://doi.org/10.1109/EDSSC.2003.1283534

Danković, D., Manić, I., Prijić, A., Djorić-Veljković, S., Davidović, V., Stojadinović, N., Prijić, Z., & Golubović, S. (2015). Negative bias temperature instability in p-channel power VDMOSFETs: Recoverable versus permanent degradation. Semiconductor Science and Technology, 30(10). https://doi.org/10.1088/0268-1242/30/10/105009

Manić, I., Danković, D., Prijić, A., Davidović, V., Djorić-Veljković, S., Golubović, S., Prijić, Z., & Stojadinović, N. (2011). NBTI related degradation and lifetime estimation in p-channel power VDMOSFETs under the static and pulsed NBT stress conditions. Microelectronics Reliability, 51(9–11), 1540–1543. https://doi.org/10.1016/j.microrel.2011.06.004

Danković, D., Manić, I., Prijić, A., Davidović, V., Djorić-Veljković, S., Golubović, S., Prijić, Z., & Stojadinović, N. (2013). Effects of static and pulsed negative bias temperature stressing on lifetime in p-channel power VDMOSFETs. Informacije MIDEM, 43(1), 58–66.

Manić, I., Danković, D., Prijić, A., Prijić, Z., & Stojadinović, N. (2014). Measurement of NBTI degradation in p-channel power VDMOSFETs. Informacije MIDEM, 44(4), 280–287.

Dankovíc, D., Maníc, I., Davidovíc, V., Prijíc, A., Marjanovíc, M., Ilíc, A., Prijíc, Z., & Stojadinovíc, N. D. (2016). On the recoverable and permanent components of NBTI in p-channel power VDMOSFETs. IEEE Transactions on Device and Materials Reliability, 16(4), 522–531. https://doi.org/10.1109/TDMR.2016.2598557

Tahi, H., Tahanout, C., Boubaaya, M., Djezzar, B., Merah, S. M., Nadji, B., & Saoula, N. (2017). Experimental Investigation of NBTI Degradation in Power VDMOS Transistors under Low Magnetic Field. IEEE Transactions on Device and Materials Reliability, 17(1), 99–105. https://doi.org/10.1109/TDMR.2017.2666260

Davidovic, V., Dankovic, D., Ilic, A., Manic, I., Golubovic, S., Djoric-Veljkovic, S., Prijic, Z., & Stojadinovic, N. (2016). NBTI and Irradiation Effects in P-Channel Power VDMOS Transistors. IEEE Transactions on Nuclear Science, 63(2), 1268–1275. https://doi.org/10.1109/TNS.2016.2533866

Davidovic, V., Dankovic, D., Golubovic, S., Djoric-Veljkovic, S., Manic, I., Prijic, Z., Prijic, A., Stojadinovic, N., & Stankovic, S. (2018). NBT stress and radiation related degradation and underlying mechanisms in power VDMOSFETs. Facta Universitatis - Series: Electronics and Energetics, 31(3), 367–388. https://doi.org/10.2298/fuee1803367d

Jeppson, K. O., & Svensson, C. M. (1977). Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices. Journal of Applied Physics, 48(5). https://doi.org/10.1063/1.323909

Parihar, N., Goel, N., Chaudhary, A., & Mahapatra, S. (2016). A Modeling Framework for NBTI Degradation Under Dynamic Voltage and Frequency Scaling. IEEE Transactions on Electron Devices, 63(3), 946–953. https://doi.org/10.1109/TED.2016.2519455

Zeng, Y., Li, X.-J., Qing, J., Sun, Y.-B., Shi, Y.-L., Guo, A., & Hu, S.-J. (2017). Detailed study of NBTI characterization in 40-nm CMOS process using comprehensive models. Chinese Physics B, 26(10), 108503. https://doi.org/10.1088/1674-1056/26/10/108503

Swami, Y., & Rai, S. (2019). Ultra-Thin High-K Dielectric Profile Based NBTI Compact Model for Nanoscale Bulk MOSFET. Silicon, 11, 1661–1671. https://doi.org/10.1007/s12633-018-9984-z

Aleksandrov, O. V. (2020). Model of the Negative-Bias Temperature Instability of p-MOS Transistors. Semiconductors, 54, 233–239. https://doi.org/10.1134/S1063782620020037

Stathis, J. H., Mahapatra, S., & Grasser, T. (2018). Controversial issues in negative bias temperature instability. Microelectronics Reliability, 81(November 2017), 244–251. https://doi.org/10.1016/j.microrel.2017.12.035

IRF9520, Data sheet, “International Rectifier,” /

Online/. Available: http://www.irf.com, 1998.

Ortiz-Conde, A., García Sánchez, F. J., Liou, J. J., Cerdeira, A., Estrada, M., & Yue, Y. (2002). A review of recent MOSFET threshold voltage extraction methods. Microelectronics Reliability, 42(4–5), 583–596. https://doi.org/10.1016/S0026-2714(02)00027-6

Grasser, T. (2014). Bias temperature instability for devices and circuits. In Bias Temperature Instability for Devices and Circuits. https://doi.org/10.1007/978-1-4614-7909-3

Reisinger, H., Grasser, T., Gustin, W., & Schlünder, C. (2010). The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress. IEEE International Reliability Physics Symposium Proceedings, 7–15. https://doi.org/10.1109/IRPS.2010.5488858

Aono, H., Murakami, E., Okuyama, K., Nishida, A., Minami, M., Ooji, Y., & Kubota, K. (2005). Modeling of NBTI saturation effect and its impact on electric field dependence of the lifetime. Microelectronics Reliability, 45(7–8), 1109–1114. https://doi.org/10.1016/j.microrel.2004.12.015

Stojadinović, N., Manić, I., Danković, D., Djorić-Veljković, S., Davidović, V., Prijić, A., Golubović, S., & Prijić, Z. (2014). Negative bias temperature instability in thick gate oxides for power MOS transistors. In Bias Temperature Instability for Devices and Circuits (pp. 533–559). https://doi.org/10.1007/978-1-4614-7909-3_20

Alam, M. A., & Mahapatra, S. (2005). A comprehensive model of PMOS NBTI degradation. Microelectronics Reliability, 45(1), 71–81. https://doi.org/10.1016/j.microrel.2004.03.019

Mahapatra, S., Goel, N., Desai, S., Gupta, S., Jose, B., Mukhopadhyay, S., Joshi, K., Jain, A., Islam, A. E., & Alam, M. A. (2013). A comparative study of different physics-based NBTI models. IEEE Transactions on Electron Devices, 60(3), 901–916. https://doi.org/10.1109/TED.2013.2238237

Dankovic, D., Manic, I., Stojadinovic, N., Prijic, Z., Djoric-Veljkovic, S., Davidovic, V., Prijic, A., Paskaleva, A., Spassov, D., & Golubovic, S. (2017). Modelling of threshold voltage shift in pulsed NBT stressed P-channel power VDMOSFETs. Proceedings of the International Conference on Microelectronics, MIEL, 2017-Octob, 147–151. https://doi.org/10.1109/MIEL.2017.8190089

Parihar, N., Goel, N., Mukhopadhyay, S., & Mahapatra, S. (2018). BTI Analysis Tool-Modeling of NBTI DC, AC Stress and Recovery Time Kinetics, Nitrogen Impact, and EOL Estimation. IEEE Transactions on Electron Devices, 65(2), 392–403. https://doi.org/10.1109/TED.2017.2780083

Mahapatra, S., & Parihar, N. (2018). A review of NBTI mechanisms and models. Microelectronics Reliability, 81, 127–135. https://doi.org/10.1016/j.microrel.2017.12.027

Mitrović, N., Dankovic, D., Prijic, Z., & Stojadinovic, N. (2019). Modelling of δvt in NBT stressed P-channel power VDMOSFETS. 2019 IEEE 31st International Conference on Microelectronics, MIEL 2019 - Proceedings, 177–180. https://doi.org/10.1109/MIEL.2019.8889584

Dankovic, D., Mitrovic, N., Prijic, Z., & Stojadinovic, N. D. (2020). Modeling of NBTS Effects in P-Channel Power VDMOSFETs. IEEE Transactions on Device and Materials Reliability, 20(1), 204–213. https://doi.org/10.1109/TDMR.2020.2974131

Zafar, S., Lee, B. H., & Stathis, J. (2004). Evaluation of NBTI in HfO2 Gate-Dielectric Stacks With Tungsten Gates. IEEE Electron Device Letters, 25(3), 153–155. https://doi.org/10.1109/LED.2004.824244

Encyclopedia of measurement and statistics. (2007). Choice Reviews Online. https://doi.org/10.5860/choice.44-4214

Hosaka, T., Nishizawa, S., Kishida, R., Matsumoto, T., & Kobayashi, K. (2019). Compact Modeling of NBTI Replicating AC Stress / Recovery from a Single-shot Long-term DC Measurement. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design, IOLTS 2019, July, 305–309. https://doi.org/10.1109/IOLTS.2019.8854421

Baranowski, R., Firouzi, F., Kiamehr, S., Liu, C., Tahoori, M., & Wunderlich, H. J. (2015). On-line prediction of NBTI-induced aging rates. Proceedings -Design, Automation and Test in Europe, DATE, 589–592. https://doi.org/10.7873/date.2015.0940

Zahid, T., & Li, W. (2016). A comparative study based on the least square parameter identification method for state of charge estimation of a LiFePO4 battery pack using three model-based algorithms for electric vehicles. Energies, 9(9), 736. https://doi.org/10.3390/en9090720




DOI: https://doi.org/10.33180/InfMIDEM2020.305

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Nikola Mitrovic, Danijel Danković, Branislav Ranđelović, Zoran Prijić, Ninoslav Stojadinović

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.